PyCon JP 2017 の発表資料です。ジャンルは「業務利用事例」となります。 追記1. PyCon JP 2017 ベストトークアワード優秀賞を受賞しました! 追記2. http://yuzutas0.hatenablog.com/entry/2017/09/12/203000 に補足を掲載しています!
こんにちは。 インフラエンジニアの村上です。 マネーフォワードのインフラチームは、サービスに関わるインフラから、自社の作業環境、開発環境、さらにはサービスのインフラの中でも物理的なものからOS・ミドルウェア・アプリケーションのメンテナンス・ビルド・リリース・運用まで幅広く関与しています。 今回はGoogle Cloud PlatformのBigQueryを活用してアクセスログの分析環境を構築した時の話を紹介します。 この記事に書かれる事 データ分析基盤としてBigQueryを使用した話と データ量を例示しながら使用を開始した時のトラブルシュートとパフォーマンスについて紹介する。 データ移行のコツもうまく含めながら書いていく。 BigQueryを採用した訳 マネーフォワードの家計簿は350万人以上のお客様に利用いただき、 アクセスログは日々2.500万件程度増えております。 サービス開始から
Digdag が Apache License 2.0 の元でオープンソース化されましたよ! さぁ試すんだ…! 今すぐにでも! https://t.co/Uzc4a5GLCe ドキュメント:https://t.co/PF8wy5KHln— Sadayuki Furuhashi (@frsyuki) 2016年6月15日 Digdagが先日リリースされたのをきっかけにデータ分析基盤構築の夢を見た。 今回は、Google Cloud Platform(以下、GCP)のコストを可視化かつ分析可能にしてみて、まずはDigdagの使用感を試してみることにする。 事前知識 Digdagとは Workload Automation Systemである。以下の記事が詳しい。 EmbulkとDigdagとデータ分析基盤と 分散ワークフローエンジン『DigDag』の実装 at Tokyo RubyKaigi
はじめに これは ドリコムAdventCalendar の7日目です 6日目は、keiichironaganoさんによる iTunes 使用許諾更新のとき一旦キャンセルしてほしい話 です 【その2】ドリコム Advent Calendar 2015 もあります 自己紹介 @ka_nipan 去年の ドリコムを支えるデータ分析基盤 に引き続き、今年もドリコムのデータ分析基盤を担当しています。 分析基盤をTreasure Dataに移行 オンプレ環境の Hadoop からTreasure Data に移行しました。 また、ジョブ管理ツールやBIツールといったサーバーもAmazon EC2 に移行しており、 徐々にオンプレ環境を離れつつあります。 背景 オンプレ環境で Hadoop を運用して3年も経つと考えなければならないのが HW の寿命です。 さてどうしようかとなった時に、ほぼ迷いなく外部
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く