ブックマーク / note.com/npaka (11)

  • Llama 3.2 の使い方|npaka

    以下の記事が面白かったので、簡単にまとめました。 ・Llama can now see and run on your device - welcome Llama 3.2 1. Llama 3.2 Vision 11B・90B1-1. Llama 3.2 Vision 11B・90B「Llama 3.2 Vision 11B・90B」は、Metaがリリースした最も強力なオープンマルチモーダルモデルです。画像+テキストのプロンプトでは英語のみ、テキストのみのプロンプトでは英語ドイツ語、フランス語、イタリア語、ポルトガル語、ヒンディー語、スペイン語、タイ語をサポートしています。 コンテキスト長は128kトークンで、画像を含む可能性のある複数ターンの会話が可能です。ただし、モデルは単一の画像に注目する場合に最適に機能するため、transformers実装では入力で提供された最後の画像のみに注

    Llama 3.2 の使い方|npaka
  • OpenAI DevDay で発表された新モデルと新開発ツール まとめ|npaka

    以下の記事が面白かったので、かるくまとめました。 ・New models and developer products announced at DevDay 1. GPT-4 Turbo「GPT-4 Turbo」は、「GPT-4」より高性能です。2023年4月までの知識と128kのコンテキストウィンドウを持ちます。さらに、「GPT-4」と比較して入力は1/3、出力は1/2の安い価格で提供します。 開発者はモデルID「gpt-4-1106-preview」で試すことができます。今後数週間以内に、安定した実稼働モデルをリリースする予定です。 1-1. Function Calling の更新「Function Calling」に、単一メッセージから複数のFunction (「車の窓を開けてエアコンをオフにする」など) を呼び出す機能などが追加されました。精度も向上しています。 1-2. 構造

    OpenAI DevDay で発表された新モデルと新開発ツール まとめ|npaka
  • LangChain クイックスタートガイド - Python版|npaka

    Python版の「LangChain」のクイックスタートガイドをまとめました。 ・LangChain v0.0.329 (2023/11/3) 1. LangChain「LangChain」は、「大規模言語モデル」 (LLM : Large language models) と連携するアプリの開発を支援するライブラリです。 「LLM」という革新的テクノロジーによって、開発者は今まで不可能だったことが可能になりました。しかし、「LLM」を単独で使用するだけでは、真に強力なアプリケーションを作成するのに不十分です。真の力は、それを他の 計算 や 知識 と組み合わせた時にもたらされます。「LangChain」は、そのようなアプリケーションの開発をサポートします。 主な用途は、次の3つになります。 ・文書に関する質問応答 ・チャットボット ・エージェント 2. LangChain のモジュール「L

    LangChain クイックスタートガイド - Python版|npaka
  • OpenAI API の ファインチューニングガイド|npaka

    1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

    OpenAI API の ファインチューニングガイド|npaka
  • LLM の LoRA / RLHF によるファインチューニング用のツールキットまとめ |npaka

    「LLM」の「LoRA」「RLHF」によるファインチューニング用のツールキットをまとめました。 1. PEFT「PEFT」は、モデルの全体のファインチューニングなしに、事前学習済みの言語モデルをさまざまな下流タスクに適応させることができるパッケージです。 現在サポートしている手法は、次の4つです。 ・LoRA ・Prefix Tuning ・P-Tuning ・Prompt Tuning ◎ LLaMA + LoRA 「Alpaca-LoRA」は、「LLaMA」に「LoRA」を適用して「Alpaca」の結果を再現するためのコードが含まれているリポジトリです。「finetune.py」がLoRAの参考になります。 ・tloen/alpaca-lora ◎ RedPajama-INCITE + LoRA 「INCITE-LoRA」は、「RedPajama-INCITE」に「LoRA」を適用する

    LLM の LoRA / RLHF によるファインチューニング用のツールキットまとめ |npaka
  • OpenAI APIのファインチューニングの学習データのガイドライン|npaka

    以下の記事を元に、「OpenAI API」のファインチューニングの学習データのガイドラインをまとめました。 1. 学習データの書式ファインチューニングするには、単一の入力「プロンプト」とそれに関連する出力 「コンプリーション」 のペアで構成される学習データが必要です。これは、1回のプロンプトで詳細な手順や複数の例を入力するような、ベースモデルの使用方法とは大きく異なります。 「学習データの書式」のガイドラインは、次のとおりです。 ・プロンプトが終了してコンプリーションが開始することをモデルに知らせるため、区切り記号 ("\n\n###\n\n"など) でプロンプトを終了する必要があります。区切り記号は、プロンプトの他の場所で使用されない文字列を指定します。 ・コンプリーションが終了することをモデルに知らせるため、停止記号 ("\n"、"###"など)でコンプリーションを終了する必要がありま

    OpenAI APIのファインチューニングの学習データのガイドライン|npaka
  • Google Colab で RWKV を試す - ChatRWKV版|npaka

    Google Colab」で「RWKV」を試したので、まとめました。 1. RWKV「RWKV」は、TransformerレベルのLLM性能を備えたRNNです。高性能、高速推論、VRAMの節約、高速学習、長い文脈長、自由な埋め込みを実現しています。 2. Colabでの実行Colabでの実行手順は、次のとおりです。 (1) メニュー「編集→ノートブックの設定」で、「ハードウェアアクセラレータ」で「GPU」の「プレミアム」を選択。 (2) Googleドライブのマウント。 # Googleドライブのマウント from google.colab import drive drive.mount('/content/drive')(3) 作業フォルダへの移動。 # 作業フォルダへの移動 import os os.makedirs("/content/drive/My Drive/work",

    Google Colab で RWKV を試す - ChatRWKV版|npaka
    BlueSkyDetector
    BlueSkyDetector 2023/03/28
    14BモデルをGPUメモリ3GB使用でも動かせると聞いて、ローカルのGTX 1060で動かしたけど、Strategyとして'cuda fp16i8 *0+ -> cpu fp32 *1'を指定する必要があった。たしかに動くけど遅かった。今後速くなるらしいけど。
  • ChatGPTプラグイン の概要|npaka

    OpenAI」の「ChatGPTプラグイン」の記事が面白かったので、かるくまとめました。 ・Chat Plugins - OpenAI API ・ウェイトリスト 1. ChatGPTプラグイン「ChatGPTプラグイン」は、「ChatGPT」をサードパーティのアプリケーションに接続するためのプラグインです。「ChatGPT」は、開発者によって定義されたAPIと対話し、機能を強化し、幅広いアクションを実行できるようになります。 次のような機能を追加できます。 ・リアルタイム情報の取得 (スポーツスコア、株価、最新ニュースなど) ・知識ベース情報の取得 (会社のドキュメント、個人的なメモなど) ・ユーザーに代わってアクションを実行 (フライトの予約、べ物の注文など) プラグイン開発者は、マニフェストファイルとAPIエンドポイントを公開します。これらはプラグインの機能を定義し、「ChatGP

    ChatGPTプラグイン の概要|npaka
  • 最近話題になった大規模言語モデルまとめ|npaka

    最近話題になった大規模言語モデルをまとめました。 1. クラウドサービス1-1. GPT-4「GPT-4」は、「OpenAI」によって開発された大規模言語モデルです。 マルチモーダルで、テキストと画像のプロンプトを受け入れることができるようになりました。最大トークン数が4Kから32kに増えました。推論能力も飛躍的に向上しています。 現在、「ChatGPT Plus」(有料版)で制限付きで利用できる他、ウェイトリストの登録者を対象に「OpenAI API」での利用も開始しています。

    最近話題になった大規模言語モデルまとめ|npaka
    BlueSkyDetector
    BlueSkyDetector 2023/03/17
    日本語だとまだGPT-3にも敵わないけど、Alpacaとか自分の手元で動かせるモデルがあるのはすごく気になる。
  • GPT Index で専門知識を必要とする質問応答チャットボットを簡単作成|npaka

    「GPT Index」を試したので、まとめました。 1. GPT Index「GPT Index」は、専門知識を必要とする質問応答チャットボットを簡単に作成できるライブラリです。 同様のチャットボットは「LangChain」でも作成できますが、「GPT Index」は、コード数行で完成してお手軽なのが特徴になります。 2. ドキュメントの準備はじめに、チャットボットに教える専門知識を記述したドキュメントを用意します。 今回は、マンガペディアの「ぼっち・ざ・ろっく!」のあらすじのドキュメントを用意しました。 ・bocchi.txt 【注意】ドキュメントが大きいと、OpenAI APIの呼び出しも多くなるので、コストを注意する必要があります。 3. Colabでの実行Google Colabでの実行手順は、次のとおりです。 (1) パッケージのインストール。 # パッケージのインストール !p

    GPT Index で専門知識を必要とする質問応答チャットボットを簡単作成|npaka
  • Google Colab で はじめる Stable Diffusion v1.4|npaka

    2. ライセンスの確認以下のモデルカードにアクセスして、ライセンスを確認し、「Access Repository」を押し、「Hugging Face」にログインして(アカウントがない場合は作成)、同意します。 4. Colabでの実行Colabでの実行手順は、次のとおりです。 (1) メニュー「編集→ノートブックの設定」で、「ハードウェアアクセラレータ」に「GPU」を選択。 (2) 「Stable Diffusion」のインストール。 # パッケージのインストール !pip install diffusers==0.3.0 transformers scipy ftfy(3) トークン変数の準備。 以下の「<HugginFace Hubのトークン>」の部分に、先程取得したHuggingFace Hubのトークンをコピー&ペーストします。 # トークン変数の準備 YOUR_TOKEN="<H

    Google Colab で はじめる Stable Diffusion v1.4|npaka
  • 1