背景 これまでMarketing Mix Modeling(MMM)におけるAdStock効果の推定について色々と記事を書いてきましたが、その他にも試したいと思っているモデルがいくつかあります。その一つが階層ベイズモデルと状態空間モデルを同時に取り扱うものです。 例えば「…
背景 データ準備 ライブラリの読み込み シミュレーションデータの作成 フィッティング stan_glmによるフィッティング 結果の確認 追試 終わりに 背景 Stanを使ってモデリングをしている時に不満を感じる点として、変数選択が難しいということが挙げられます。もともと私自身は、例えばStepwiseやLassoなどを用いた"機械的な"変数選択があまり好きではない1のですが、それでも分析を効率的に進める上でそれらの手法に頼りたくなることがあります。 そういったときにglmを用いているのであればstep関数により容易に変数選択が可能なのですが、Stanではそうもいきません。何か良い方法はないかと探していたところ、StanのGithubレポジトリに{projpred}というそれっぽいlibraryを見つけたので、紹介がてら変数の選択精度を実験してみます2。 データ準備 ライブラリの読み込み 今
背景 これまでMarketing Mix Modeling(MMM)におけるAdStock効果の推定について色々と記事を書いてきましたが、その他にも試したいと思っているモデルがいくつかあります。その一つが階層ベイズモデルと状態空間モデルを同時に取り扱うものです。 例えば「地域別の売上推移のデータ」が手元にあると考えてみましょう。地域ではなく人や商品でも構いませんが、ある要因の各水準がそれぞれ時系列データを持っている状況(いわゆるパネルデータ)で、ひとまずここでは地域とします。このようなデータはあらゆる会社で保有していることでしょう。 今、各地域についてMMMにより広告効果を推定することを考えたとき、どのようなモデリングが可能でしょうか? シンプルに考えれば、地域ごとに一つずつモデルを作るという方法が挙げられます。例えば地域の数が2つ3つしかなかったり、モデルの作成に時間をかけることが可能で
実務でデータ分析を行うときにしばしば変数間の因果関係の有無およびその強さについて問われることがあるのですが、その回答としてベイジアンネットワークを使いたいと思っていたので調べてみました。 この記事ではベイジアンネットワークを扱うためのパッケージ ({bnlearn}および{BNSL})を用いた構造の推定およびそのTipsを示します。 分析環境の準備 ライブラリの読み込み まずは必要なライブラリを読み込みます。今回はRにおけるベイジアンネットワークのメジャーなライブラリである{bnlearn}に加え、{BNSL}を用います。 library(bnlearn) library(BNSL) サンプルデータの作成 続いてこちらの記事を参考にサンプルデータを作成します。一部の係数を修正しましたが、記事同様にHeightとSBPがBMIに刺さり、BMIがFBSに刺さる構造となっています。 set.se
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く