Abstract white, inc の ソフトウェアエンジニア r2en です。 自社では新規事業を中心としたコンサルタント業務を行なっており、 普段エンジニアは、新規事業を開発する無料のクラウド型ツール を開発したり、 新規事業のコンサルティングからPoC開発まで携わります 今回は、機械学習の技術調査を行なったので記事で共有させていただきます 以下から文章が長くなりますので、口語で記述させていただきます scikit-learn 0.22で新しく、アンサンブル学習のStackingを分類と回帰それぞれに使用できるようになったため、自分が使っているHeamyと使用感を比較する KaggleのTitanicデータセットを使い、性能や精度、速度を検証する アンサンブルに使用する機械学習モデルは、lightgbm, regularized greedy forest, extremely r