タグ

algorithmとmapreduceに関するGlnのブックマーク (3)

  • Hadoopによるテキストマイニングの精度を上げる2つのアルゴリズム

    Hadoopによるテキストマイニングの精度を上げる2つのアルゴリズム:テキストマイニングで始める実践Hadoop活用(最終回)(1/3 ページ) Hadoopとは何かを解説し、実際にHadoopを使って大規模データを対象にしたテキストマイニングを行います。テキストマイニングを行うサンプルプログラムの作成を通じて、Hadoopの使い方や、どのように活用できるのかを解説します Passive-Aggressiveとロジスティック回帰で精度向上 前回の「実践! 「MapReduceでテキストマイニング」徹底解説」では、「青空文庫」の作品から学習を行い、テキストデータから著者の寿命を推定するMapReduceプログラムを作成しました。 今回は、前回のプログラムを少し変更するだけで、精度が上がる「Passive-Aggressive」というアルゴリズムを実装します。また、テキスト分類のアルゴリズムと

    Hadoopによるテキストマイニングの精度を上げる2つのアルゴリズム
  • 実践! 「MapReduceでテキストマイニング」徹底解説

    青空文庫」をテキストマイニング! 前回の「いまさら聞けないHadoopとテキストマイニング入門」では、Hadoopとテキストマイニングの概要や構成、MapReduceの仕組み、Hadoopの活用場面などを解説し、Hadoopの実行環境を構築しました。今回から、Hadoopを使い、テキストマイニングのMapReduceプログラムを作成していきます。 「青空文庫」というサイトをご存じでしょうか。青空文庫は、著作権が切れた日の文学作品を掲載しているWebサイトで、青空文庫の全データをDVDや、BitTorrentによる配信で入手できます。今回は、このデータを使ってテキストマイニングを行いましょう。 前回、テキスト分類で、著者の性別、年齢、地域、職業などの属性も推定できると書きましたが、青空文庫は、他のデータにはない、著者属性があります。青空文庫の作品は、著作権が切れて、作者がなくなっている場

    実践! 「MapReduceでテキストマイニング」徹底解説
  • Hadoop を使うべき場合・使うべきでない場合 - 武蔵野日記

    id:ny23 さんが動的ダブル配列を使って Wikipedia のテキスト処理を高速化なんてのを書いている。たぶんこれのエントリを見る前にMapReduce と四身の拳を見た方がコンテクストが分かると思う。Hadoop 使ってなんでもできそう! Hadoop の勉強したい!なんて思っている人は読んでみるとよい。 自分の考えについて書いておくと、自分は誰も彼も Hadoop 使いたがる状況には辟易している。ほとんどの人には不要なはずだし、そもそも Hadoop は(ny23 さんも書かれているが)メモリに乗り切らない大規模データを扱いたいときに効力を発揮するのであって、メモリに乗り切るくらいのサイズであれば、データ構造を工夫したり適切なアルゴリズムを選択した方が遥かによい(id:tsubosaka さんも実験されていたが)。たとえデータが大規模であったとしても、たとえば形態素解析なんかのタ

    Hadoop を使うべき場合・使うべきでない場合 - 武蔵野日記
  • 1