タグ

algorithmとstatisticsに関するHeavyFeatherのブックマーク (11)

  • MapReduceできる10個のアルゴリズム - 『企業成長の方程式 ― AIDグロースコミットによる成長戦略』

    HadoopとMahoutにより、ビッグデータでも機械学習を行うことができます。Mahoutで実装されている手法は、全て分散処理できるアルゴリズムということになります。Mahoutで実装されているアルゴリズムは、ここに列挙されています。論文としても、2006年に「Map-Reduce for Machine Learning on Multicore」としていくつかのアルゴリズムが紹介されています。 そこで今回は、(何番煎じか分かりませんが自分の理解のためにも)この論文で紹介されているアルゴリズムと、どうやって分散処理するのかを簡単にメモしておきたいと思います。計算するべき統計量が、summation form(足し算で表現できる形)になっているかどうかが、重要なポイントです。なってない場合は、”うまく”MapReduceの形にバラす必要があります。 ※例によって、間違いがあった場合は随時

    MapReduceできる10個のアルゴリズム - 『企業成長の方程式 ― AIDグロースコミットによる成長戦略』
  • データマイニングで使われるトップ10アルゴリズム - 『企業成長の方程式 ― AIDグロースコミットによる成長戦略』

    2006年のデータマイニング学会、IEEE ICDMで選ばれた「データマイニングで使われるトップ10アルゴリズム」に沿って機械学習の手法を紹介します(この論文は@doryokujin君のポストで知りました、ありがとうございます!)。 必ずしも論文の内容には沿っておらず個人的な私見も入っていますので、詳細は原論文をご確認下さい。また、データマイニングの全体観をサーベイしたスライド資料がありますので、こちらも併せてご覧下さい。 データマイニングの基礎 View more presentations from Issei Kurahashi 1. C4.5 C4.5はCLSやID3といったアルゴリズムを改良してできたもので、決定木を使って分類器を作ります。決定木といえばCARTが良く使われますが、CARTとの違いは以下のとおりです。 CARTは2分岐しかできないがC4.5は3分岐以上もできる C

    データマイニングで使われるトップ10アルゴリズム - 『企業成長の方程式 ― AIDグロースコミットによる成長戦略』
  • 「馬券の配当160億円」をどうやって実現したのか - 朝日新聞の補足記事 - アフター・パンデミック

    ちまたの競馬予想会社のうさん臭さは、「そんなに儲かるならなぜ自分で買わない」という言葉で表されるが、ほんとに儲かる人間はやはり自分で馬券を買っていることを証明した事件だと言える。 asahi.com(朝日新聞)が競馬の配当160億円隠す 英国人社長のデータ分析会社という記事を報じているが、新聞紙面ではその隣に関連記事も掲載されているので、これを引用する。 「なぜそんなに稼げた - 3連単を分散買い」(2009年10月9日付朝日新聞より) ユープロ関係者らによると、同社は、天候や出走馬の血統、騎手などの各データを入力、解析する競馬必勝プログラムを使い、高確率で配当金を得ていたという。だが、億単位の資金を使い、ほとんどの組み合わせの馬券を買うという、一般の競馬ファンにはまねできないやり方だった。 05年設立の同社が目をつけたのは、「3連単」という馬券。1着から3着までを順番通り当てるもので、配

    「馬券の配当160億円」をどうやって実現したのか - 朝日新聞の補足記事 - アフター・パンデミック
  • 統計的に正しいランキングを行う方法 - Hello, world! - s21g

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ポジティブ/ネガティブ投票による正しいランキング方法が以下の記事で紹介されています。 How Not To Sort By Average Rating この計算方法では、投票数が少ない場合には分散が大きく不正確な評価で、 投票数が多くなるにつれて分散が小さく正確な評価が得られているという事を考慮しています。以下数式 これはScoreの信頼区間を表しています。 この信頼区間の下界をランキングのスコアにすれば良い事になります。 ここで、は、 です。全体に占めるポジティブ投票数の割合ですね。 は標準正規分布上の 信頼区間の有意確率です。 さて、五段階評価によるRatingに同様のテクニックを適用する場合はどうしたらいいでしょうか

  • ベイズを学びたい人におすすめのサイト - download_takeshi’s diary

    ベイジアンフィルタとかベイズ理論とかを勉強するにあたって、最初はなんだかよくわからないと思うので、 そんな人にお勧めのサイトを書き残しておきます。 @IT スパム対策の基技術解説(前編)綱引きに蛇口当てゲーム?!楽しく学ぶベイズフィルターの仕組み http://www.atmarkit.co.jp/fsecurity/special/107bayes/bayes01.html いくつかの絵でわかりやすく解説してあります。 自分がしるかぎり、最もわかりやすく親切に解説してる記事です。数学とかさっぱりわからない人はまずここから読み始めるといいでしょう。 茨城大学情報工学科の教授のページから http://jubilo.cis.ibaraki.ac.jp/~isemba/KAKURITU/221.pdf PDFですが、これもわかりやすくまとまってます。 初心者でも理解しやすいし例題がいくつかあ

    ベイズを学びたい人におすすめのサイト - download_takeshi’s diary
  • クラスタリングの定番アルゴリズム「K-means法」をビジュアライズしてみた - てっく煮ブログ

    集合知プログラミング を読んでいたら、K-means 法(K平均法)の説明が出てきました。K-means 法はクラスタリングを行うための定番のアルゴリズムらしいです。存在は知っていたんだけどいまいちピンときていなかったので、動作を理解するためにサンプルを作ってみました。クリックすると1ステップずつ動かすことができます。クラスタの数や点の数を変更して、RESET を押すと好きなパラメータで試すことができます。こうやって1ステップずつ確認しながら動かしてみると、意外に単純な仕組みなのが実感できました。K-means 法とはK平均法 - Wikipedia に詳しく書いてあるけど、もうすこしザックリと書くとこんなイメージになります。各点にランダムにクラスタを割り当てるクラスタの重心を計算する。点のクラスタを、一番近い重心のクラスタに変更する変化がなければ終了。変化がある限りは 2. に戻る。これ

  • 大規模データを基にした自然言語処理 - DO++

    人工知能問題研究会 (SIG-FPAI)でタイトルの題目で一時間ほど話してきました。 発表資料 [pptx] [pdf] 話した内容は - 自然言語処理における特徴ベクトルの作り方と、性質 - オンライン学習, Perceptron, Passive Agressive (PA), Confidence Weighted Learning (CW) 確率的勾配降下法 (SGD) - L1正則化, FOLOS - 索引を用いた効率化, 全ての部分文字列を利用した文書分類 で、スライドで70枚ぐらい。今までの発表とかぶっていないのはPA CW SGD FOLOSあたりでしょうか オンライン学習、L1正則化の話がメインになっていて、その両方の最終形の 確率的勾配降下法 + FOLOSの組み合わせは任意の損失関数に対してL1/L2正則化をかけながらオンライン学習をとても簡単にできるという一昔前

    大規模データを基にした自然言語処理 - DO++
  • HITS, 主成分分析, SVD - naoyaのはてなダイアリー

    ウェブグラフのリンク解析によるページの評価と言えば PageRank が著名ですが、もうひとつ Jon Kleinberg による HITS (Hyperlink-induced topic search)も有名です。最初の論文 Authoritative Sources in a Hyperlinked Environment は 1999年です。IIR の 21章で、この PageRank と HITS についての解説がありました。 HITS HITS はウェブページの評価に二つの軸を用います。一つが authority スコア、もう一つが hub スコアです。 例えば「Perl の情報が欲しい」という検索要求に対しては CPAN や 開発者である Larry Wall のホームページなどが重要度の高いページかと思います。これらのページは「Perl に関して信頼できる情報源」ということ

    HITS, 主成分分析, SVD - naoyaのはてなダイアリー
  • 確率論、統計学関連のWeb上の資料 - yasuhisa's blog

    確率論と統計学は俺がまとめるから、他の分野はお前らの仕事な。 確率論 Index of /HOME/higuchi/h18kogi 確率空間 生成されたσ-加法族 確率の基的性質 確率変数とその分布 分布の例 分布関数 期待値、分散、モーメント 期待値の性質 独立確率変数列の極限定理 大数の弱法則(Weak Law of Large Numbers) 確率1でおこること 大数の強法則 中心極限定理 特性関数 Higuchi's Page Brown運動 Brown運動のモーメントの計算 連続性 Brown運動の構成:Gauss系として Brown運動に関する確率積分 空間L^2の元の確率積分 伊藤の公式(Ito formula) 日女子大学理学部数物科学科の今野良彦先生のところにあった資料 最尤法とその計算アルゴリズム 収束のモード 大数の法則と中心極限定理 指数分布族モデルにおける最

    確率論、統計学関連のWeb上の資料 - yasuhisa's blog
  • 大規模データ処理のための行列の低ランク近似 -- SVD から用例ベースの行列分解まで -- - 武蔵野日記

    id:naoya さんのLatent Semantic Indexing の記事に触発されて、ここ1週間ほどちょくちょく見ている行列の近似計算手法について書いてみる。ここでやりたいのは単語-文書行列(どの単語がどの文書に出てきたかの共起行列)や購入者-アイテム行列(どの人がどのを買ったかとか、推薦エンジンで使う行列)、ページ-リンク行列(どのページからどのページにリンクが出ているか、もしくはリンクをもらっているか。PageRank などページのランキングの計算に使う)、といったような行列を計算するとき、大規模行列だと計算量・記憶スペースともに膨大なので、事前にある程度計算しておけるのであれば、できるだけ小さくしておきたい(そして可能ならば精度も上げたい)、という手法である。 行列の圧縮には元の行列を A (m行n列)とすると A = USV^T というように3つに分解することが多いが、も

    大規模データ処理のための行列の低ランク近似 -- SVD から用例ベースの行列分解まで -- - 武蔵野日記
  • 自然言語処理における類似度学習(機械学習における距離学習)について - 武蔵野日記

    Twitter でグラフ理論に関する話題が上がっていたので、最近調べている距離学習(distance metric learning)について少しまとめてみる。カーネルとか距離(類似度)とかを学習するという話(カーネルというのは2点間の近さを測る関数だと思ってもらえれば)。 この分野では Liu Yang によるA comprehensive survey on distance metric learning (2005) が包括的なサーベイ論文として有名なようだが、それのアップデート(かつ簡略)版として同じ著者によるAn overview of distance metric learning (2007) が出ているので、それをさらに簡略化してお届けする(元論文自体文は3ページしかないし、引用文献のあとに表が2ページあって、それぞれ相違点と共通点がまとまっているので、これを見ると非

    自然言語処理における類似度学習(機械学習における距離学習)について - 武蔵野日記
  • 1