タグ

ブックマーク / logics-of-blue.com (5)

  • 状態空間モデルをStanで推定するときの収束を良くするコツ | Logics of Blue

    この記事では、状態空間モデルをStanで推定するときの収束を良くするコツを説明します。 コードはGitHubから参照できます。 状態空間モデルは説明能力が高く、データに合わせて柔軟に構造を変えることができます。しかし、あまりに複雑な構造を指定すると、結果が収束しないこともしばしばあります。 収束が悪い時には、弱情報事前分布を指定したり、MCMC実行時の設定を変える(iterやwarmupを増やす等)で対応することが多いと思います。こちらの方法で多くの場合は解決しますが、複雑なモデルですと、そもそものStanコードの実装の方法から変えた方が良いかもしれません。 この記事では、状態空間モデルの収束を良くするために、Stanコードの書き方を工夫するやり方を紹介します。 良いやり方は無いかなと調べていたところ『Bayesian structural time series modeling』という

  • Visual Studioで作ってみたFlaskアプリ | Logics of Blue

    FlaskはPythonにおけるマイクロなWebフレームワークの1つです。同じWebフレームワークであるDjangoと比べるとできることは小さいですが、逆に言えば小さいアプリを作るのは簡単になったかと思います。 この一連の記事はVisual StudioとFlaskを使って簡単なアプリ開発をしてみようのコーナーです。この記事ではFlaskアプリ記事の一覧とお互いの関係性を記しました。 この記事ではWebアプリの開発を何も知らない人を対象とします。といっても、この記事の著者もWebアプリ開発に明るくありません。自分の勉強の意味も込めて書きました。 誤りが含まれるかもしれませんが、ご容赦ください。何かあれば、ご指摘いただけますと幸いです。 スポンサードリンク 目次 Visual Studioで作ってみたFlaskアプリ 関連記事一覧 1.Visual Studioで作ってみたFlaskアプリ

  • 時系列分析のためのブックガイド | Logics of Blue

    新規作成:2018年03月05日 最終更新:2018年03月06日 この記事は、時系列分析をこれから学ぼうとされる方のためのブックガイドです。 書籍によってカバーされている範囲、R言語などのプログラミング言語を援用しているかしていないか、そして書籍の難易度などをまとめています。 また、私自身、「時系列分析と状態空間モデルの基礎」という時系列分析の入門書を執筆しており、このがどのような立ち位置にあるのかも説明しています。 目次 書籍紹介 時系列分析のトピック 状態空間モデルの分類 古典的な時系列モデルを学ぶことの意義 書籍で扱われている内容の比較 隼時系列の立ち位置 1.書籍紹介 Rによる実装なし 沖(2010)『計量時系列分析』 以下「沖」と略します。 実用的でバランスも良く、当サイトでも強く推している書籍です。 ARIMA・GARCH・見せかけの回帰などが丁寧に説明されています

  • Pythonによる状態空間モデル | Logics of Blue

    最終更新:2017年06月06日 Pythonを用いた、状態空間モデルの実装方法について説明します。 なお、正規線形状態空間モデル(動的線形モデル)のみをここでは扱います。 Pythonを使えば、カルマンフィルタや最尤法によるパラメタ推定を短いコードで簡潔に実装することができます。 なお、この記事ではOSはWindowsPythonは『Python 3.6.0 :: Anaconda custom (64-bit)』を使用して、JupyterNotebook上で計算を実行しました。 JupyterNotebookの出力はリンク先を参照してください。 目次 状態空間モデルとPython時系列分析 データの読み込み ローカルレベルモデルの推定 ローカル線形トレンドモデルの推定 季節変動の取り込み 推定するパラメタの数を減らす モデルの比較と将来予測 1.状態空間モデルとPython時系列分析

  • Logics of Blue

    はじめてきた方はサイト案内やサイトマップをご覧ください。 管理人Twitter始めました。一部のコードはGitHubで管理するようにしました。 プライバシーポリシーはこちらです。 ★2022年度の統計学の講義資料はこちらから閲覧できます。 ●書籍情報:Pythonではじめる時系列分析入門 書籍のサポートページはこちらです(サンプルコードやデータもこちらです)。 ●書籍情報:Pythonで学ぶあたらしい統計学の教科書 [第2版] 書籍のサポートページはこちらです(サンプルコードやデータもこちらです)。 ●書籍情報:意思決定分析と予測の活用 基礎理論からPython実装まで 書籍のサポートページはこちらです(サンプルコードやデータもこちらです)。 ●書籍情報:R言語ではじめるプログラミングとデータ分析 書籍のサポートページはこちらです(サンプルコードやデータもこちらです)。 ●書籍情報:RとS

  • 1