タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

wikipediaとMathに関するInoHiroのブックマーク (8)

  • ガンマ関数 - Wikipedia

    y = Γ(x) のグラフ Γ(x + iy) の絶対値 (グラフ中「Re」は x に相当、「Im」は y に相当) ガンマ関数(ガンマかんすう、英: gamma function)とは、数学において階乗の概念を複素数全体に拡張した特殊関数。複素階乗とも。一般に と表記される。 自然数 に対しては、ガンマ関数と の階乗との間では次の関係式が成り立つ: 1729年に数学者レオンハルト・オイラーによって無限乗積の形で、最初に導入された[1]。 という記号は、1814年にルジャンドルが導入した[1]。また、それ以前にガウスが得ており などと表記していた(ただし、 であった)。 定義[編集] 実部が正となる複素数 に対して、次の広域積分で定義される複素関数: をガンマ関数と呼ぶ[2]。この積分表示は第二種オイラー積分とも呼ばれる。 一般の複素数 に対しては解析接続もしくは次の極限で定義される。 他

    ガンマ関数 - Wikipedia
  • ルベーグ積分 - Wikipedia

    正値関数の積分は曲線の下部と軸で囲まれた部分(図の青く塗られた部分)の面積と解釈できる。 数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと x 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、英: Lebesgue integral)は、積分をより多くの関数へ拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかし、より不規則な関数を考える

    ルベーグ積分 - Wikipedia
  • 多様体 - Wikipedia

    出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2015年11月) 好きなところに座標を描ける多様体 多様体(たようたい、英: manifold, 独: Mannigfaltigkeit)とは、解析学(微分積分学、複素解析)を展開するために必要な構造を備えた空間のことである(ただし位相多様体においてはその限りではない。ただ、単に多様体と言った場合、可微分多様体か複素多様体のことを指す場合が多い)。それは局所的にユークリッド空間と見なせるような図形や空間(位相空間)として定義される。多様体上には好きなところに局所的に座標を描き込むことができる。 直感的な説明[編集] 地球の地図 多様体に座標を描くという作業は地球上の地図を作る作業に似ている。地図の上の点は地球上の点に対応し、さらに地面には描かれていない緯線や

    多様体 - Wikipedia
  • 行列の階数 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "行列の階数" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年7月) 線型代数学における行列の階数(かいすう、rank; ランク)は、行列の最も基的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。 例えば、行列 A の階数 rank(A)(あるいは rk(A) または丸括弧を落として rank A)は、A の列空間(列ベクトルの張るベクトル空間)の次元[1]に等しく、また A の行空間

  • 三角関数の公式の一覧 - Wikipedia

    記事内では主にラジアンを使用し、度の場合には別記するか度を示す記号(°)を付記する。 三角関数[編集] 最も基的な関数は正弦関数(サイン、sine)と余弦関数(コサイン、cosine)である。これらは sin(θ), cos(θ) または括弧を略して sin θ, cos θ と記述される(θ は対象となる角の大きさ)。 正弦関数と余弦関数の比を正接関数(タンジェント、tangent)と言い、具体的には以下の式で表される: 上記3関数の逆数関数を余割関数(コセカント、cosecant)・正割関数(セカント、secant)・余接関数(コタンジェント、cotangent)と言う。余割関数の略称には cosec と csc の2種類があり、この記事では csc を使用する。 逆関数[編集] 三角関数の逆関数を逆三角関数と言う。日語においては逆正弦関数のように頭に「逆」を付けて呼ぶ。式中では

    三角関数の公式の一覧 - Wikipedia
  • ラグランジュの未定乗数法 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ラグランジュの未定乗数法" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2011年7月) ラグランジュの未定乗数法(ラグランジュのみていじょうすうほう、英: method of Lagrange multiplier)とは、束縛条件のもとで最適化を行うための数学(解析学)的な方法である。いくつかの変数に対して、いくつかの関数の値を固定するという束縛条件のもとで、別のある1つの関数の極値を求めるという問題を考える。各束縛条件に対して定数(未定乗数、Lagrange multiplier)を用意し、これらを係数とする線形結合を新しい関数(未

    ラグランジュの未定乗数法 - Wikipedia
  • 固有値と固有ベクトル - Wikipedia

    モナ・リザの画像(左図)を平行四辺形に線形変換した画像(右図)。この線形変換において、画像の中にある右向きの矢印(青色)は変化していないのに対し、上を向いた矢印(赤色)は方向が変化している。この青い矢印がこの変換における固有ベクトルであり、赤い矢印は固有ベクトルではない。ここで青い矢印は伸張も収縮もしていないので、この固有値は 1 である。このベクトルと平行なすべてのベクトルは固有ベクトルである。零ベクトルも含めて、これらのベクトルはこの固有値に対する固有空間を形成する。 数学の線型代数学において、線型変換の固有値(こゆうち、英: eigenvalue)とは、零ベクトルでないベクトルを線型変換によって写したときに、写された後のベクトルが写される前のベクトルのスカラー倍になっている場合の、そのスカラー量(拡大率)のことである。この零ベクトルでないベクトルを固有ベクトル(こゆうベクトル、英:

    固有値と固有ベクトル - Wikipedia
  • 冪乗則 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "冪乗則" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2023年3月) この項目「冪乗則」は途中まで翻訳されたものです。(原文:en:Power law) 翻訳作業に協力して下さる方を求めています。ノートページや履歴、翻訳のガイドラインも参照してください。要約欄への翻訳情報の記入をお忘れなく。(2008年5月) 冪乗則にしたがうグラフの例。横軸が商品のアイテム数、縦軸が販売数量を表す。このモデルは「80:20の法則」として知られ、右に向かう部分はロングテールと呼ばれる。 冪乗則(べきじょうそく、power law)は、統計モデルの一つ。

    冪乗則 - Wikipedia
  • 1