世の中様々な介入効果・施策効果を検証するためのexperimentが行なわれていると思うんですが、意外とその効果検証というのは難しいものです。特にいわゆる統計的因果推論の立場から見れば、web上で接触する一般ユーザーに対する介入や施策といったものの検証を完全にランダム化比較試験(Randomized Controlled Trial: RCT)として実施するのは困難です。 この問題について統計的因果推論の観点からは様々なソリューションを与えることが可能なようです。例えば傾向スコア(Propensity Score)は最近色々なところで取り上げられていますし、バックドア基準といったものも挙げられます。で、今回はその中でも差分の差分法(Difference-in-Differences: DID)を取り上げることにします。理由は単純で「どうしてもexperimentによって何かしらの介入・施策