タグ

Softwareと2次元に関するItisangoのブックマーク (2)

  • バックエンドエンジニアがscikit-learn入門しました【教師なし学習編】 - Qiita

    はじめに 機械学習ライブラリのデファクトスタンダード的存在であるscikit-learnの"教師なし学習"とその定量的評価手法をまとめる。 数学レベルでの理解は途中で挫折したため、まずはライブラリから概要を理解しようと思いまとめました。 教師あり学習編はこちら 前処理編はこちら 教師なし学習とは 教師なし学習とは、入力データのみが与えられ正解ラベルがない状態で学習を行う手法である。 教師なし学習を使う場面は以下。 正解ラベルを用意できないケース 教師あり学習や他の教師なし学習の前処理をするケース データを可視化するケース データをなんとなく理解したいケース 教師なし学習は、次元削減とクラスタリングの2つの大きなタスクに活用される。 次元削減 次元削減とは、データを表現する特徴量の数(次元数)が多すぎる場合に、その特徴量の数を減らすことである。 記事では、アルゴリズムとして以下をまとめる。

    バックエンドエンジニアがscikit-learn入門しました【教師なし学習編】 - Qiita
  • 機械学習手法を用いてブログの文章を分析・可視化(テキストマイニング) - karaage. [からあげ]

    自分のブログのテキストを分析・可視化してみたい 以前自分のブログの分析を「内部リンク」や「はてブ情報」の観点で行ってみました。 ただ、目的無く分析してしまったので、結局イマイチどう活用してよいかよく分からない結果しか得られませんでした。 そんな前回の反省を全く活かすことなく、また何の目的もなくブログを分析してみることにしました。今回は以前から興味のあった機械学習を用いたブログの文章の分析・可視化(テキストマイニングと呼ばれるらしいです)にチャレンジしてみることにしました。どちらかというとテキストマイニングが主で、使用する素材(学習データ)に困ったので仕方なく自分のブログを使ってみたというのが正直なところです。 ネットでコピペすりゃ簡単にできるだろと思っていたのですが、自分のやりたいことするのはそれなりに大変だったので、知見としてやり方とどんなことが分かるのかを残しておきます。 ブログのテキ

    機械学習手法を用いてブログの文章を分析・可視化(テキストマイニング) - karaage. [からあげ]
  • 1