タグ

数論に関するKatagiriSoのブックマーク (10)

  • 保型形式と表現論 - pi

    この記事は日曜数学Advent Calender 20日目の記事です。まずはじめに投稿が遅れてしまったことをお詫びいたします。 adventar.org 前日19日はa33554432さんの複雑さとは何かを考える - 機械のように今を輝き、少女のようにここを定義せよでした。 先週の記事 unaoya-pi.hatenablog.com の続編として、Waldspurgerによる定理と相対跡公式を用いた証明を紹介する予定でしたが、予定を変更して保型形式と群の表現がどのように対応するかという話を紹介します。これは定理を理解するためのより基的な内容です。今後数回にわたって準備を行った後、定理について紹介したいと思いますのでしばらくお付き合いください。 この記事を書くにあたり 高瀬幸一著 保型形式とユニタリ表現 https://www.sugakushobo.co.jp/903342_52_ma

    KatagiriSo
    KatagiriSo 2019/08/14
    カシミール元、普遍包絡環、SL(2,R)
  • https://krex.k-state.edu/dspace/bitstream/handle/2097/18277/VincentPigno2014.pdf?sequence=1

  • http://www.math.nus.edu.sg/~chanhh/papers/28.pdf

  • http://arxiv.org/pdf/0805.3135

  • http://arxiv.org/pdf/1304.0684

  • https://math.berkeley.edu/~vojta/cime/cime.pdf

    KatagiriSo
    KatagiriSo 2016/01/18
    ネヴァンリンナ理論とディオファントス近似の類似
  • 「3の100乗を19で割ったあまりは?」を4通りの方法で計算する - tsujimotterのノートブック

    この記事は 日曜数学 Advent Calendar 2015 の 8日目の記事です。(7日目:京大特色入試, コインの問題を解く | kinebuchitomo) ニコニコ動画の「数学」タグを検索するのが日課の日曜数学者 tsujimotter です。 「数学」で検索すると、当にいろいろな動画が見つかるのです。ぜひお時間あるときに試してみてください。 日曜数学 Advent Calendar 8日目の日は、そんなニコニコ動画で見つけた動画から1つ、みなさんにご紹介したいと思います。 今回ご紹介したいのは、初音ミクが歌うボカロ曲です。タイトルは 「 を で割ったあまりは?」 です。そのタイトル通り、まさに数学の問題をテーマとした珍しい曲です。まずは、ぜひリンク先の動画をご覧ください。 tsujimotter は、心地よいメロディーが素敵な曲だと思いました。この記事を書いている最中、バッ

    「3の100乗を19で割ったあまりは?」を4通りの方法で計算する - tsujimotterのノートブック
  • 最大公約数 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Greatest common divisor|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指

    最大公約数 - Wikipedia
    KatagiriSo
    KatagiriSo 2015/05/13
    GCD,GCF,HCFと略記
  • 篩法 - Wikipedia

    篩法(ふるいほう)、または単に篩(ふるい)とは、数論でよく使う技法の総称である。 整数をふるった集合 (sifted set) の元の個数を数えたり、その大きさを評価したりする。篩の操作によって得られる集合の例として、ある数を超えない素数の集合が挙げられる。つまりいにしえのエラトステネスの篩、あるいは一般にルジャンドルの篩と呼ばれるものである。しかしこれらの篩を直接用いた素数分布の定量的研究は、誤差項の累積というどうしようもない困難に直面した。20世紀に入り、双子素数予想やゴールドバッハ予想などの研究の中でこれらの困境を克服する方法が見いだされ、現在ではブルンの篩をはじめ、セルバーグの篩、大きな篩といったものが編み出されている。 これらの原始的なエラトステネスの篩の発展形においては、ふるわれた(評価されるべき)集合を、他の解析しやすいより単純な集合によって近似することや、sieving f

  • コラッツの問題 - Wikipedia

    コラッツマップ下の軌道を有向グラフにしたもの。コラッツ予想は、すべてのパスが1に至るということと同値である。 コラッツの問題(コラッツのもんだい、Collatz problem)は、数論の未解決問題のひとつである。問題の結論の予想を指してコラッツ予想と言う。伝統的にローター・コラッツの名を冠されて呼ばれる[1]が、固有名詞に依拠しない表現としては3n+1問題とも言われ、また初期にこの問題に取り組んだ研究者や場所の名を冠して、角谷の問題、米田の予想、ウラムの予想、シラキュース問題などとも呼ばれる。 数学者ポール・エルデシュは「数学はまだこの種の問題に対する用意ができていない」と述べた。また、ジェフリー・ラガリアスは2010年に、コラッツの予想は「非常に難しい問題であり、現代の数学では完全に手が届かない」と述べた[2]。 2019年9月、テレンス・タオはコラッツの問題がほとんどすべての正の整数

    コラッツの問題 - Wikipedia
  • 1