Not your computer? Use a private browsing window to sign in. Learn more about using Guest mode
Not your computer? Use a private browsing window to sign in. Learn more about using Guest mode
はじめに こんにちは。Hadoop連載 第4回は太田さんに代わって大倉が担当します。 これまでの連載で、Hadoopによるデータ処理の概略については理解されていると思います。今回はHadoopを利用したシステムの実例ということで、ブログ分析を行う「blogeye」システムの概略と、その中でのHadoop利用法を紹介します。 また、blogeyeはAmazonが提供しているEC2(レンタルサーバ)、S3(ストレージ)をHadoopと組み合わせて利用しているので、その辺りの導入方法についても紹介します。 これまでの連載 Hadoop、hBaseで構築する大規模分散データ処理システム Hadoopのインストールとサンプルプログラムの実行 複数マシンへHadoopをインストールする blogeyeとは 「blogeye」(ブログアイ)は日本語のブログをクロール、リアルタイムに分析して、流行語と思わ
前回、JavaScriptでMap Reduceのコードが書けるHadoop Streamingについて紹介しました。 標準入出力さえサポートされてあれば、任意のコードでMap Reduuceの処理が書ける、というものでしたが、エンジニアはそもそも面倒くさがり。コードも書くのも面倒です。 と、いうわけで、今回はもうコードすら書かずにSQLライクでMap ReduceできるHiveというプロダクトについて、まとめたいと思います。 Hive Hiveとは、簡単に言うとHadoop上で動作するRDBのようなものです。 HDFSなどの分散ファイルシステム上に存在するデータに対して、HiveQLというSQLライクな言語で操作できます。 で、面白いのがHiveQLの操作は基本的にMap Reduceのラッパーになっていること。 要するに、SELECT文実行すると裏でMap&Reduceのタスクが走り出
久々のBlog更新、というわけでリハビリがてらJavaScriptで軽く遊んでみたいと思います。 いま、巷で流行ってるMapReduceのオープンソース実装Hadoopは「Hadoop Streaming」という標準入出力でデータのやりとりができる仕組みを使って、 Hadoopの実装言語であるJavaにとらわれず、RubyやPerlなど他の言語でもMap+Reduceの処理ができることが1つのウリになっています。 で、僕たちwebエンジニアはみんなJavaScript大好きなので、「JavaScriptでもMap Reduceやりたい!」という流れになるのは必然です。 そこで、試行錯誤でいろいろ試してみると割とさっくり出来たのでそのメモを残しておきたいと思います。 環境の整備 Mac OSX上のVMWare FusionにCentOSの仮想マシンを2台立ち上げて、環境セットアップしました。
Error message : Directory is not found or not writable (DATA_DIR) Directory is not found or not writable (DIFF_DIR) Directory is not found or not writable (BACKUP_DIR) Directory is not found or not writable (CACHE_DIR) Site admin: whitestar Copyright © 2006-2023 whitestar. All Rights Reserved. Icons powered by famfamfam. PukiWiki 1.5.0 Copyright © 2001-2006 PukiWiki Developers Team. License is GPL
Apache Hadoop プロジェクトでは、信頼性の高いスケーラブルな分散コンピューティングのためのオープンソースソフトウェアを開発しています。Hadoop には以下のサブプロジェクトがあります。 Hadoop Common: Hadoop のほかのサブプロジェクトをサポートする共通のユーティリティです。 Avro: 各種スクリプト言語に動的に組み込み可能なデータ直列化システムです。 Chukwa: 大規模分散システムを管理するためのデータ収集システムです。 HBase: 巨大テーブル用の構造化データストレージをサポートするスケーラブルな分散データベースです。 HDFS: アプリケーションデータに対して高いスループットでのアクセスを可能にする分散ファイルシステムです。 Hive: データ・サマライゼーションやアドホックなクエリー操作を可能にするデータウェアハウス・インフラストラクチャです
(参考) Cloudera社のHadoopパッケージの情報 http://archive.cloudera.com/docs/ 必要なもの ・UbuntuやdebianのLinux環境1台(手元ではUbuntu Server 11.04/10.04/9.10/8.04, debian 5あたりで試していますが、他バージョンでも大丈夫だと思います) ・インターネット接続 ・Sun(Oracle)のJavaパッケージ(aptでインターネットからインストール) ・Cloudera社のCDH3のHadoopパッケージ(aptでインターネットからインストール) 作業手順 1. インストール: Linux環境にて、rootで作業します。 sudo su 1-1. Sun(Oracle)のJavaを入れます。(Sun(Oracle)のものが必要です。) ※ ここで、ubuntu 10や11の人は/etc
はじめに この連載では、大規模分散計算フレームワーク「Hadoop」と、その上につくられた大規模分散データベース「hBase」の仕組みと簡単なサンプルアプリケーションを紹介します。HadoopとhBaseは、Googleの基盤ソフトウェアのオープンソースクローンです。機能やコンセプトについては、Googleが発表している学術論文に依っています。 これらの学術論文によると、Googleでは大規模分散ファイルシステム「Google File System」、大規模分散計算フレームワーク「MapReduce」、大規模分散データベース「BigTable」、分散ロックサービス「Chubby」という4つのインフラソフトウェアが使われています。 図1にGoogleの基盤技術間の依存関係、そしてそれに対応するOSSの対応関係を示しました。まずは対応するGoogleの基盤技術それぞれの機能や特徴をざっくりと
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く