タグ

algorithmとdataに関するMakotsのブックマーク (4)

  • 500 Data Structures and Algorithms interview questions and their solutions

    Array: Find pair with given sum in the array Check if subarray with 0 sum is exists or not Print all sub-arrays with 0 sum Sort binary array in linear time Find a duplicate element in a limited range array Find largest sub-array formed by consecutive integers Find maximum length sub-array having...

    500 Data Structures and Algorithms interview questions and their solutions
  • DBエンジニアのミックさんが語る、RDBで階層構造データを扱う「入れ子集合モデル」の将来性

    これまで階層構造データはリレーショナルデータベースでうまく扱えませんでしたが、その解決策としてジョー・セルコが提案したのが「入れ子集合モデル」です。この手法を紹介した『プログラマのためのSQLグラフ原論』の刊行にあたり、翻訳されたDBエンジニアのミックさんに入れ子集合モデルの将来性についてうかがいました。 なぜRDBで木と階層構造を扱う手法が1冊の書籍に? ――『プログラマのためのSQLグラフ原論 リレーショナルデータベースで木と階層構造を扱うために』についてミックさんにうかがいます。最初に、書がどういうなのか教えていただけますか? ミック:内容としては、リレーショナルデータベース(RDB)でグラフ構造の一つである木と階層構造を扱うための方法論「入れ子集合モデル」をメインに解説しています。RDBには大きな問題があり、入れ子集合モデルがそれを解決しうる手法だと見込まれています。その問題と

    DBエンジニアのミックさんが語る、RDBで階層構造データを扱う「入れ子集合モデル」の将来性
  • ウェーブレット木の世界 - Preferred Networks Research & Development

    岡野原です。ウェーブレット木の解説を統数研チャンネルにて行いました。 統数研チャンネル(プレミアム会員ならしばらくタイムシフト視聴可能)。 ウェーブレット木は万能のデータ構造であり、系列データ、全文検索、グラフ、二次元情報、フィンガープリントなど様々なデータに対して多くの操作をサポートします。 解説では大規模データの背景、ウェーブレット木の作り方、使い方、様々なデータへの適用、最前線(ウェーブレット行列)などを紹介しています。解説は拙著「高速文字列解析の世界」とあわせてみていただけたらと思います。

    ウェーブレット木の世界 - Preferred Networks Research & Development
  • データマイニングを仕事にする人の生態系 - dataminer.me

    「データマイニングを仕事とする人=データマイナー」はどういう人たちがいるかということについて ビックデータとかで世の中がバズってるけど「僕はデータマイニングをやってます!」といったときに適切にその人がやっている業務領域を把握している人ってかなり少ないと思う。 グリーで働いていたときもデータマイナーはどういった仕事をしていて、何をやっていて何ができるのかっていうことを理解していなくてミスコミュニケーションが生まれていたと思うのでちょっとその生態系についてまとめてみた。おそらく、データマイナーといわれる人は以下のタイプがいる: 研究開発をする人 統計学的に新しいイノベーションを起こせる人。Google のPageRankアルゴリズムを作りましたとか、NetfrixやAmazonのレコメンデーションエンジン作りましたとかいう人がこれにあたる。スキル的には統計学にかなり長けている必要があり、その他

    データマイニングを仕事にする人の生態系 - dataminer.me
    Makots
    Makots 2012/10/23
    マイニングしたいのう
  • 1