タグ

algorithmとdeeplearningに関するMakotsのブックマーク (6)

  • 異常検知入門と手法まとめ - Qiita

    異常検知について勉強したのでまとめておきます。 参考文献 下記文献を大いに参考にさせていただきました: [1] Ruff, Lukas, et al. "A Unifying Review of Deep and Shallow Anomaly Detection." arXiv preprint arXiv:2009.11732 (2020). [2] 井手. "入門 機械学習による異常検知―Rによる実践ガイド" コロナ社(2015) [3] 井手,杉山. "異常検知と変化検知 (機械学習プロフェッショナルシリーズ)" 講談社サイエンティフィク(2015) [4] 比戸. "異常検知入門" Jubatus Casual Talks #2(2013) [5] Pang, Guansong, et al. "Deep learning for anomaly detection: A rev

    異常検知入門と手法まとめ - Qiita
  • Variational Autoencoder徹底解説 - Qiita

    とします。これはReconstruction Errorと呼ばれます。入力したデータになるべく近くなるように誤差逆伝播法で重みの更新を行うことで学習することができます。 1-2. Variational Autoencoder(VAE) VAEはこの潜在変数$z$に確率分布、通常$z \sim N(0, 1)$を仮定したところが大きな違いです。通常のオートエンコーダーだと、何かしら潜在変数$z$にデータを押し込めているものの、その構造がどうなっているかはよくわかりません。VAEは、潜在変数$z$を確率分布という構造に押し込めることを可能にします。 イメージは下記です。 まだよくわかりませんね。実際にプログラムを動かしたものを見ると少しイメージが湧くかと思います。 まずは入力と出力を対比させてみます。(これは$z$の次元を20に設定して学習したものです。)ちょっとぼやっとしていますが、元の形

    Variational Autoencoder徹底解説 - Qiita
  • ディープラーニングの限界 | POSTD

    (注:2017/04/08、いただいたフィードバックを元に翻訳を修正いたしました。 @liaoyuanw ) この記事は、私の著書 『Deep Learning with PythonPythonを使ったディープラーニング)』 (Manning Publications刊)の第9章2部を編集したものです。現状のディープラーニングの限界とその将来に関する2つのシリーズ記事の一部です。 既にディープラーニングに深く親しんでいる人を対象にしています(例:著書の1章から8章を読んだ人)。読者に相当の予備知識があるものと想定して書かれたものです。 ディープラーニング: 幾何学的観察 ディープラーニングに関して何より驚かされるのは、そのシンプルさです。10年前は、機械認識の問題において、勾配降下法で訓練したシンプルなパラメトリックモデルを使い、これほど見事な結果に到達するなど誰も想像しませんでした。

    ディープラーニングの限界 | POSTD
  • はじめてのAdversarial Example

    今回はadversarial exampleについて解説していきます。Adversarial exampleというのは、下図のように摂動を与えることによりモデルに間違った答えを出力させてしまうもののことです。 この例では、もともとモデルがパンダと正しく分類することができていた画像に摂動を与えることで、テナガザルと誤分類させています。しかし、人間には元の画像との違いはほとんど分からず、パンダのままに見えます。 Adversarial exampleは機械学習モデルを実用化していく上で大きな問題となります。例えば、交通標識をadversarial exampleにしてしまえば、自動運転車をだませてしまう可能性があります。 注目を集めてきている研究分野ですが、まだちゃんと調べたことがないという人も多いかと思います。今回もなるべく丁寧に解説していきたいと思います。 目次 基礎 攻撃 防御 論文紹介

    はじめてのAdversarial Example
    Makots
    Makots 2017/10/17
    Adversarial ExampleでAIの電脳をハックすることによりAIの目を盗めそう
  • ディープラーニング(TensorFlow)を使用した株価予想 ~その2~ - Qiita

    前回の続き。 ディープラーニングのフレームワークであるTensorFlowを使用して株価を予想するぞ~、というお話です。ちなみに前回は完全に失敗でした。 前回のコメントで、tawagoさんから「Googleが同じようなことしている」という情報をいただいたので、そちらをコピ・・・インスパイアしてみました。 ##前回との相違点 前回は、「数日分の日経平均を使用して、次の日の日経平均が上がるか、下がるか、変わらないか(3択)を予想する」ものでした。 Googleのデモでは、「数日分の世界中の株価指数(ダウ、日経平均、FTSE100、DAXなど)を使用して、次の日のS&Pが上がるか下がるか(2択)を予想する」という内容でした。 ということで、下記が前回からの主な変更点となります。 「上がるか」「下がるか」の2択 日経平均だけでなく、他国の株価指数も使用 隠れ層x2、ユニット数は50,25 予想する

    ディープラーニング(TensorFlow)を使用した株価予想 ~その2~ - Qiita
  • 自然言語処理まわりのDeep Learningを自分なりにまとめてみた — KiyuHub

    自然言語処理まわりのDeep Learningを自分なりにまとめてみた “自然言語処理のためのDeep Learning”というスライドを公開しました. 自然言語処理のためのDeep Learning from Yuta Kikuchi カジュアルな感じで自然言語処理まわりのDeep Learningの話題をまとめた感じになっています. きっかけは,勉強会をしていることを知ったOBのbeatinaniwaさんにお願いされたことで, 株式会社Gunosyの勉強会の場で,発表の機会を頂きました. それが,9/11で,その後9/26に研究室内で同じ内容で発表しました. どちらも思った以上に好評を頂け,公開してはと進めて頂いたので,公開することにしました. もちろん間違いが含まれている可能性も多分にあるので.気づいた方はご指摘頂けると幸いです. 内容ざっくり 前半は,ニューラルネットワークを図を使

  • 1