タグ

algorithmとgraphに関するMakotsのブックマーク (3)

  • 大規模グラフ解析のための乱択スケッチ技法

    最適輸送問題(Wasserstein 距離)を解く方法についてのさまざまなアプローチ・アルゴリズムを紹介します。 線形計画を使った定式化の基礎からはじめて、以下の五つのアルゴリズムを紹介します。 1. ネットワークシンプレックス法 2. ハンガリアン法 3. Sinkhorn アルゴリズム 4. ニューラルネットワークによる推定 5. スライス法 このスライドは第三回 0x-seminar https://sites.google.com/view/uda-0x-seminar/home/0x03 で使用したものです。自己完結するよう心がけたのでセミナーに参加していない人にも役立つスライドになっています。 『最適輸送の理論とアルゴリズム』好評発売中! https://www.amazon.co.jp/dp/4065305144 Speakerdeck にもアップロードしました: https

    大規模グラフ解析のための乱択スケッチ技法
  • ダイクストラ法, 貪欲アルゴリズム - naoyaのはてなダイアリー

    現実逃避をしながらウェブを眺めていたら ダイクストラ法(最短経路問題) にたどり着きました。単一始点最短路問題におけるダイクストラ法の解説です。 何を思ったのか、図を眺めていたところ動かしたい衝動に駆られて、気付いたらパワポでアニメーションができていました。 http://bloghackers.net/~naoya/ppt/090319dijkstra_algorithm.ppt 実装もしてみました。隣接ノードの表現は、ここではリストを使いました。 #!/usr/bin/env perl use strict; use warnings; package Node; use base qw/Class::Accessor::Lvalue::Fast/; __PACKAGE__->mk_accessors(qw/id done cost edges_to prev/); package Q

    ダイクストラ法, 貪欲アルゴリズム - naoyaのはてなダイアリー
  • Link Analysis and Related Topics - Home

    2008年度 先端情報科学特論 II & IV リンク解析と周辺の話題 担当 新保 仁 shimbo@is.naist.jp 日時 2008/11/10, 11/17, 12/1, 12/8 (全 4 回) - 4限 15:10-16:40 場所 情報棟 L3 講義室 リンク解析は, グラフ (ネットワーク) データの構造から有用な情報を抽出するための, データマイニングの一研究分野です. この講義ではまず, リンク解析が取り扱う 2 種類の尺度 (重要度と関連度) について述べ, それぞれの代表的な計算手法を紹介します. 後半では, 近年機械学習分野で盛んに研究されているカーネルのうち, グラフ上の節点に対して定義されたカーネル (グラフカーネル) と, そのリンク解析への応用について紹介します. 第1回 11月10日 スライド 第2回 11月17日 スライド 第3回 12月1日

  • 1