タグ

ブックマーク / qiita.com/drken (4)

  • ボードゲーム「共円」に学ぶ、ガウス整数 x + yi の世界 - Qiita

    2. 共円定石 メジャーなものから超マイナーなものまで、九路盤定石をすべて公開します!!! 定石 0: 自明パターン 比較的自明な場合として 一直線上 (ルール) 長方形 等脚台形 が挙げられます。いずれも共円であることが自明なパターンですが、このうち等脚台形については、斜め 45 度の等脚台形に注意が必要です。しばしば見逃してしまいます。 余談ですが「斜め 45 度じゃない等脚台形」も一応あります。例えば下図は確かに等脚台形になっています!3 定石 1: 八角形 続いてこれも比較的わかりやすい八角形定石です。内角がすべて $135$ 度になっていて、対称性から共円になることが明快です。しかし右図のように 4 点だけを取り出すと、意外と指摘が難しいことがわかると思います。このような共円をほぼ確実に避けられるようになると脱初心者と言えるでしょう! 八角形定石のサイズにはバリエーションがあり、

    ボードゲーム「共円」に学ぶ、ガウス整数 x + yi の世界 - Qiita
    Nyoho
    Nyoho 2020/12/29
  • 再帰関数を学ぶと、どんな世界が広がるか - Qiita

    0. はじめに 再帰関数は初めて学ぶときに壁になりがちで なんとなくわかった...けれど どんな場面で使えるのだろう...いい感じの例を探したい! という気持ちになりがちです。再帰関数は、なかなかその動きを直感的に想像することが難しいため、掴み所が無いと感じてしまいそうです。 そこで記事では 再帰関数の動きを追いまくることで、再帰関数自体に慣れる 再帰的なアルゴリズムの実例に多数触れることで、世界を大きく広げる! ことを目標とします。特に「再帰関数がどういうものかはわかったけど、使いどころがわからない」という方のモヤモヤ感を少しでも晴らすことができたら嬉しいです。なお記事では、ソースコード例に用いるプログラミング言語として C++ を用いておりますが、基的にはプログラミング言語に依存しない部分についての解説を行っています。 追記 1. 再帰関数とは 再帰の意味はとても広いです。自分自

    再帰関数を学ぶと、どんな世界が広がるか - Qiita
    Nyoho
    Nyoho 2019/04/07
  • AtCoder に登録したら次にやること ~ これだけ解けば十分闘える!過去問精選 10 問 ~ - Qiita

    記事を終えた次は? AtCoder Beginners Selection を終えたら、AtCoder 上の過去問が AtCoder Problems に集大成されていますので、片っ端から埋めるような気持ちで精進していきましょう。記事の続編として AtCoder 版!蟻 (初級編) AtCoder 版!蟻 (中級編) AtCoder 版!蟻 (上級編) AtCoder 版!蟻 (発展的トピック編) も執筆しましたので参考にしていただけたらと思います。また、アルゴリズムとデータ構造に関するトピックを集大成した書籍として、 問題解決力を鍛える!アルゴリズムとデータ構造 (通称、けんちょん) を上梓しました。ぜひ読んでみてください。 1. AtCoder とは AtCoder は以下のコンテストサイトを運営しています。今後常に訪れることになるサイトです: AtCoder コンテスト

    AtCoder に登録したら次にやること ~ これだけ解けば十分闘える!過去問精選 10 問 ~ - Qiita
  • ソートアルゴリズムを極める! 〜 なぜソートを学ぶのか 〜 - Qiita

    NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。 今回はソートについて記します。 0. はじめに データ構造とアルゴリズムを学ぶと一番最初に「線形探索」や「ソート」が出て来ます。これらのテーマは応用情報技術者試験などでも頻出のテーマであり、アルゴリズムの Hello World とも呼ぶべきものです。 特にソートは、 計算量の改善 ($O(n^2)$ から $O(n\log{n})$ へ) 分割統治法 ヒープ、バケットなどのデータ構造 乱択アルゴリズムの思想 といった様々なアルゴリズム技法を学ぶことができるため、大学の授業でも、アルゴリズム関連の入門書籍でも、何種類ものソートアルゴリズムが詳細に解説される傾向にあります。記事でも、様々なソートアルゴリズムを一通り解説してみました。 しかしながら様々な種類のソートを勉強するのもよいが、「ソートの使い方」や

    ソートアルゴリズムを極める! 〜 なぜソートを学ぶのか 〜 - Qiita
  • 1