タグ

アルゴリズムに関するPuyostyのブックマーク (11)

  • はじめに - アルゴリズムとデータ構造大全

    はじめに このドキュメントは,主に競技プログラミングで出題される問題を解く際に利用できるアルゴリズムやデータ構造をまとめたものです.特定の問題にはあまりフォーカスしないため,問題を解く際の考察の仕方等の内容はありません.詳しく,正確に,分かりやすく書いていこうと思っています. このドキュメントは執筆途中です. 想定する読者 C++を用いたプログラミングに慣れている方を読者として想定しており,C++言語の仕様や,文法にはあまり触れません.また,計算量という用語についても説明しません.ただし,償却計算量など,計算量の見積もりが複雑なものについては必要に応じて説明します. コードについて このドキュメントで登場するコードは,可読性向上のため,以下のようなコードがファイルの先頭に記述してあることを前提としています.また,適切な問題を用いてコードの検証がなされている場合は,コード周辺にのように,検証

  • Hiroshi Takahashi

    Skip to the content. 機械学習の研究者を目指す人へ 機械学習の研究を行うためには、プログラミングや数学などの前提知識から、サーベイの方法や資料・論文の作成方法まで、幅広い知識が必要になります。レポジトリは、学生や新社会人を対象に、機械学習の研究を行うにあたって必要になる知識や、それらを学ぶための書籍やWebサイトをまとめたものです。 目次 プログラミングの準備 Pythonを勉強しよう 分かりやすいコードを書けるようになろう 数学の準備 最適化数学を学ぼう 基的なアルゴリズムとその実践 機械学習の全体像を学ぼう 基的なアルゴリズムを学ぼう 深層学習の基礎を学ぼう scikit-learnやPyTorchのチュートリアルをやってみよう サーベイの方法 国際会議論文を読もう Google Scholarを活用しよう arXivをチェックしよう スライドの作り方 論文の

  • アルゴリズムビジュアル大事典

    このサポートページでは、マイナビ出版発行の書籍「アルゴリズムビジュアル大事典」にて作成しましたシンボル、アニメーション、疑似コードを掲載いたします。また、内容のアップデートを行ってまいります。詳しい解説は、書をご参考にしてください。 アニメーションコントローラの使い方はクイックマニュアルでご確認頂けます。 補足情報が表示されているトピックにつきましては、ご注意ください。その他の訂正等は正誤表をご覧ください。ご質問、不具合等のご報告は、ご遠慮なくy.watanobe@gmail.com(渡部)までお送りください。

  • 1からプログラムを書く能力を問う日本初の検定第1回「アルゴリズム実技検定」結果報告

    AtCoder株式会社(社:東京都新宿区/代表取締役社長:高橋直大 以下AtCoder)は、2019年12月14日(土)に実施しました、プログラミングスキルを可視化する日初の検定「アルゴリズム実技検定」の結果を報告いたします。検定では、獲得した点数に応じてプログラミングの実力を5段階(エントリー、初級、中級、上級、エキスパート)で示すランクが認定されます。 ※AtCoderユーザー:AtCoderの定期コンテストへの参加経験がある受験者 ※一般受験者:AtCoderの定期コンテストへの参加経験がない受験者 ※無得点/未認定:受験において無得点や未認定の結果となった受験者 第1回のアルゴリズム実技検定には458名が受験しました。うち、AtCoderのプログラミングコンテストに参加したことのない一般受験者が全体の約3割(126名)が参加しており、検定に対する注目度の高さが伺えました。最

    1からプログラムを書く能力を問う日本初の検定第1回「アルゴリズム実技検定」結果報告
  • ID生成大全 - Qiita

    セッションIDやアクセストークン、はたまた業務上で使う一意の識別子など、いろんなところで一意のIDを生成しなきゃいけないケースが存在します。 そこで世間で使われているIDの生成方法について調べてみました。 選択基準 ID生成における要求として、以下の観点が上げられるかと思います。 生成の速度 大量にデータを短期間で処理し、それらにIDを付与する場合、ID生成そのものがボトルネックとなることがあります。 推測困難性 IDを機密情報と結びつける場合、IDを改ざんされても、機密データが見れないようにできている必要があります。 順序性 採番した順にデータをソートする必要がある場合は、IDがソートキーとして使えないといけません。 それぞれについて各生成手段を評価します。 ID生成の手段 データベースの採番テーブル 採番用のテーブルを作り、そこで番号をUPDATEしながら取得していくやりかたです。古い

    ID生成大全 - Qiita
  • Amazonの推薦システムの20年

    IEEE Internet Computingの2017年5・6月号に "Two Decades of Recommender Systems at Amazon.com" という記事が掲載された。 2003年に同誌に掲載されたレポート "Amazon.com Recommendations: Item-to-Item Collaborative Filtering" が Test of Time、つまり『時代が証明したで賞』を受賞したことをうけての特別記事らしい 1。 「この商品を買った人はこんな商品も買っています」という推薦で有名なAmazonが1998年にその土台となるアルゴリズムの特許を出願してから20年、彼らが 推薦アルゴリズムをどのような視点で改良してきたのか 今、どのような未来を想像するのか その一端を知ることができる記事だった。 アイテムベース協調フィルタリング 20年前も

    Amazonの推薦システムの20年
  • B TreeとB+ Treeの違い - Carpe Diem

    概要 インデックスに対してMongoDBはB Treeを採用し、MySQLのInnoDBはB+ Treeを採用しています。 どうして採用しているアルゴリズムが違うのだろう?と思って調べてみました。 主な違い B+ TreeはほとんどB Treeと同じですが、以下の点が異なります。 リーフノードとリーフノードを結ぶポインタがある データはリーフノードのみに保持する 具体例 言葉だけだと分かりにくいので、Visualizeするツールを使って具体例を表示します。 [1, 2, 3, 4, 5, 6, 8, 10, 15, 18]という数列に対し、Order: 3で作ってみます。 Orderは1ノードから出る枝の数のことです。 B Tree B-Tree Visualization B+ Tree B+ Tree Visualization 先程のB Treeと違って、データはリーフノードに持つの

    B TreeとB+ Treeの違い - Carpe Diem
  • 競馬の解析をガチでやったら回収率が100%を超えた件 - stockedge.jpの技術メモ

    記事のタイトル通り、競馬で回収率100%を超える方法を見つけたので、その報告をする。 ちなみに、この記事では核心部分はぼかして書いてあるため、読み進めたとしても「競馬で回収率100%を超える方法」が具体的に何なのかを知ることはできない。(私は当に有効な手法を何もメリットが無いのに公開するほどお人好しではないので) 当に有効な手法を見つけたいのであれば、あなた自身がデータと向き合う以外の道は無い。 ただし、大まかな仕組み(あと多少のヒントも)だけは書いておくので、もしあなたが独力でデータ解析を行おうという気概のある人物なのであれば、この記事はあなたの助けとなるだろう。 ちなみに、これは前回の記事の続きなので、読んでない方はこちらからどうぞ。 stockedge.hatenablog.com オッズの歪みを探す さて、前回からの続きである。 前回の記事のブコメで「回収率を上げたいならオッズ

    競馬の解析をガチでやったら回収率が100%を超えた件 - stockedge.jpの技術メモ
  • https://jp.techcrunch.com/2015/10/10/20151009dont-blame-the-robot-drivers/

    https://jp.techcrunch.com/2015/10/10/20151009dont-blame-the-robot-drivers/
  • pythonと遺伝的アルゴリズムで作るFX自動売買システム その1 - Qiita

    base_domain = MODE.get('production') url_base = 'https://{}/v1/candles?'.format(base_domain) url = url_base + 'instrument={}&'.format(currency_pair.name) + \ 'count=5000&' +\ 'candleFormat=midpoint&' +\ 'granularity={}&'.format(granularity.name) +\ 'dailyAlignment=0&' +\ 'alignmentTimezone=Asia%2FTokyo&' +\ 'start={}T00%3A00%3A00Z'.format(start) response = requests_api(url) def requests_api(url, p

    pythonと遺伝的アルゴリズムで作るFX自動売買システム その1 - Qiita
  • データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家

    2006年のデータマイニング学会、IEEE ICDMで選ばれた「データマイニングで使われるトップ10アルゴリズム」に沿って機械学習の手法を紹介します(この論文は@doryokujin君のポストで知りました、ありがとうございます!)。 必ずしも論文の内容には沿っておらず個人的な私見も入っていますので、詳細は原論文をご確認下さい。また、データマイニングの全体観をサーベイしたスライド資料がありますので、こちらも併せてご覧下さい。 データマイニングの基礎 View more presentations from Issei Kurahashi 1. C4.5 C4.5はCLSやID3といったアルゴリズムを改良してできたもので、決定木を使って分類器を作ります。決定木といえばCARTが良く使われますが、CARTとの違いは以下のとおりです。 CARTは2分岐しかできないがC4.5は3分岐以上もできる C

    データマイニングで使われるトップ10アルゴリズム - データサイエンティスト上がりのDX参謀・起業家
  • 1