タグ

数学とmathに関するTaKUMAのブックマーク (7)

  • バナッハ=タルスキーのパラドックス - Wikipedia

    バナッハ=タルスキーのパラドックス: 球を適当に分割して、組み替えることで、元と同じ球を2つ作ることができる。 バナッハ=タルスキーのパラドックス (Banach-Tarski paradox) は、球を3次元空間内で、有限個の部分に分割し、それらを回転・平行移動操作のみを使ってうまく組み替えることで、元の球と同じ半径の球を2つ作ることができるという定理(ただし、各断片は通常の意味で体積を定義できない)。この操作を行うために球を最低5つに分割する必要がある。 バナッハ=タルスキーの証明では、ハウスドルフのパラドックスが援用され、その後、多くの人により証明の最適化、様々な空間への拡張が行われた。 結果が直観に反することから、定理であるが「パラドックス」と呼ばれる。証明の1箇所で選択公理を使うため、選択公理の不合理性を論じる文脈で引用されることがある。ステファン・バナフ(バナッハ)とアルフレト

    バナッハ=タルスキーのパラドックス - Wikipedia
    TaKUMA
    TaKUMA 2010/09/21
    ほぉー
  • Routines and objects by topic — NumPy v2.0 Manual

    Routines and objects by topic# In this chapter routine docstrings are presented, grouped by functionality. Many docstrings contain example code, which demonstrates basic usage of the routine. The examples assume that NumPy is imported with: A convenient way to execute examples is the %doctest_mode mode of IPython, which allows for pasting of multi-line examples and preserves indentation.

  • ドロネー図 - Wikipedia

    出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 記事の信頼性向上にご協力をお願いいたします。(2021年1月) この記事で示されている出典について、該当する記述が具体的にその文献の何ページあるいはどの章節にあるのか、特定が求められています。 ご存知の方は加筆をお願いします。(2021年1月) ドロネー三角形分割の一例 ドロネー図(ドロネーず、英語: Delaunay diagram)あるいはドロネー三角形分割(ドロネーさんかっけいぶんかつ、露: триангуляция Делоне, 英: Delaunay triangulation)は、距離空間内に離散的に分布した点の集合に対し得られる、それらをある方法に従い辺で結んだ図形である。 計算幾何学あるいは離散幾何学における代表的な考察対象の1つである。名称は考案者であるロシア数学者、ボリス・ドロネ

    ドロネー図 - Wikipedia
  • ボロノイ図 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ボロノイ図" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2011年10月) ボロノイ図の一例 個々の色分けが一つの領域を表す ボロノイ図(ボロノイず、英: Voronoi diagram)は、ある距離空間上の任意の位置に配置された複数個の母点(英: site、サイト)に対して、同一距離空間上の他の点がどの母点に近いかによって領域分けされた図のことである。特に二次元ユークリッド平面の場合、領域の境界線は、各々の母点の二等分線の一部になる。母点の位置のみによって分割パターンが決定されるため、母点に規則性を持たせれば美しい図形を生み出す

    ボロノイ図 - Wikipedia
  • 公理的集合論 - Wikipedia

    現在一般的に使われている集合の公理系はZF (ツェルメロ=フレンケル) 公理系、またはZF公理系に下で述べる選択公理(Axiom of Choice)を加えた ZFC公理系(Zermelo-Fraenkel set-theory with the axiom of Choice)である。ZC, ZでそれぞれZFCおよびZFから置換公理を除いたもの、Z-, ZF-, ZC-, ZFC- で各体系から正則性公理を除いたものを表す。キューネンは『The Foundations of Mathematics』で「初等数学のほとんどはZC-での中でなされる」と述べている[1]。 外延性の公理 A と B が全く同じ要素を持つのなら A と B は等しい: 。 空集合の公理 要素を持たない集合が存在する: 。 外延性の公理から、空集合の公理が存在を主張する集合はただ一つであることが言えるので、これを空

  • 連続体仮説 - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注によって参照されておらず、情報源が不明瞭です。 脚注を導入して、記事の信頼性向上にご協力ください。(2023年9月) 連続体仮説(れんぞくたいかせつ、Continuum hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。 1個よりも多い最小の個数は2個である。2個よりも大きい最小の個数は3個である。このように、有限の個数に対しては1を足すことでそれ自身よりも大きい最小の個数を得ることができる。では無限の個数に対してはどうであろうか。自然数や実数は無限個存在する。これらの個数は異なるはずであるが、個数という呼び方

  • Google Code Archive - Long-term storage for Google Code Project Hosting.

    Code Archive Skip to content Google About Google Privacy Terms

  • 1