本スライドでは、有名なアルゴリズムを概観し、アルゴリズムに興味を持っていただくことを目標にします。 第 1 部:アルゴリズムとは 第 2 部:学年を当ててみよう 第 3 部:代表的なアルゴリズム問題 第 4 部:コンピュータとアルゴリズム
About Project Euler What is Project Euler? Project Euler is a series of challenging mathematical/computer programming problems that will require more than just mathematical insights to solve. Although mathematics will help you arrive at elegant and efficient methods, the use of a computer and programming skills will be required to solve most problems. The motivation for starting Project Euler, and
概要 インターネットに晒されているWebサービスでは TV等で紹介されたことによる大量流入 悪意ある人物からの攻撃 クライアントのバグに依る大量リクエスト など、本来想定していた以上のトラフィックが来ることはよくあります。 単純にシステムを構築すると大規模トラフィックに対応できずシステムがスローダウンしてしまうため、何かしらrate limitをかけておいた方が良いです。 ただしrate limitと一口に入っても色々あるため、今回は主なrate limitアルゴリズムを紹介します。 Leaky bucket Leaky bucketはデータ転送レートを一定にする(=上限を設定する)アルゴリズムです。 下の図のように、様々な流量の水流がそのバケツに流れ込んでも小さな穴からは一定の水流が流れ出す仕組みです。 ref: What is the difference between token
In this installment of our “Patterns of Service-oriented Architecture” series, we’re going to talk about a complex concept called idempotency, and a technique you can apply to your service design to ensure that requested work is only performed once. Intent Prevent duplicate requests by allowing the Consumer of a Service to send a value that represents the uniqueness of a request, so that no reques
exponential backoffとは? データ送信処理が失敗して再送信するときに、失敗回数が増えるに連れて再送信するまでの待ち時間を指数関数的に増やす仕組みを exponential backoff という。 有名な例としては Carrier sense multiple access with collision detection (CSMA/CD) や Carrier sense multiple access with collision avoidance(CSMA/CA) といった通信方式で、失敗回数 N に対して、[0, 2^N-1] からランダムな数を選び、その slot time 分だけ待って再送信するようになっている。 ランダムに選んでいるのは、複数の通信が同じタイミングで失敗した時に、また同じタイミングで再送されないようにするため。 また、失敗回数が一定値を超え
0. はじめに AtCoderなどでは、グラフを扱った問題が多く出るが、その度に一から実装していると時間が掛かりすぎてしまうため、有名なものをあらかじめ持っておく必要がありそう。そこで、Pythonを用いて、ダイクストラ法、ベルマンフォード法、プリム法、クラスカル法、ワーシャルフロイド法を実装した。 コメント、意見等ある方は是非! お待ちしてます! 1. ダイクストラ法 1.1. ダイクストラ法(defaultdictで実装) defaultdictで実装すると、リストで実装するよりも、ノード数$N$が大きい際には高速に動作する。ただし、経路復元の関数は、うまく書けなかった......。 (2019/7/6 追記)結局できました。1.1.1. を参照してください。 import collections import heapq class Dijkstra: def __init__(se
Internet Congestion Control Research Group Y. Cheng Internet-Draft N. Cardwell Intended status: Experimental S. Hassas Yeganeh Expires: January 4, 2018 V. Jacobson Google, Inc July 03, 2017 Delivery Rate Estimation draft-cheng-iccrg-delivery-rate-estimation-00 Abstract This document describes a generic algorithm for a transport protocol sender to estimate the current delivery rate of its data. At
NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。 今回はソートについて記します。 0. はじめに データ構造とアルゴリズムを学ぶと一番最初に「線形探索」や「ソート」が出て来ます。これらのテーマは応用情報技術者試験などでも頻出のテーマであり、アルゴリズムの Hello World とも呼ぶべきものです。 特にソートは、 計算量の改善 ($O(n^2)$ から $O(n\log{n})$ へ) 分割統治法 ヒープ、バケットなどのデータ構造 乱択アルゴリズムの思想 といった様々なアルゴリズム技法を学ぶことができるため、大学の授業でも、アルゴリズム関連の入門書籍でも、何種類ものソートアルゴリズムが詳細に解説される傾向にあります。本記事でも、様々なソートアルゴリズムを一通り解説してみました。 しかしながら様々な種類のソートを勉強するのもよいが、「ソートの使い方」や
ざっくり言うと リスト構造のデータに対してランダムアクセスはしちゃだめだぞ。お兄さんとの約束だ! 発端 数年前に他部署の支援で作ったJavaのシステムに、ちょっとデカめのデータを突っ込んだらありえないほど遅いので助けてくれ、と連絡が入った。 まぁクエリとかインデックスをちょっと見れば直るっしょ・・・と鼻をほじりながら支援に向かった。 処理内容 遅い部分の処理は以下のようなものであった。 処理対象のデータをListで受け取る。 それをforループで1件ずつ前処理する。 処理結果をオブジェクトに格納し、ORマッパーでDBにINSERTする。 これだけ? そう、これだけだ。並列処理なんて高級なことはもちろんやってない。 インフラ調査 処理中のサーバのようすを調査する。今回のインフラは典型的な3層3サーバ構成。 WEBサーバはなにもかもが余裕。 APサーバではCPUを1つ使い切っている。 14コア
ChaCha(チャチャ)という一見ふざけた名前の暗号が最近(自分の中で)話題ということで,勉強がてらに記事にしてみました. 背景 ChaChaの構造 Salsa20 Chacha 初期状態 ラウンド操作 ChaChaの安全性 実装してみた 参考 背景 2016年4月現在,TLSの新しいバージョンとしてTLS 1.3が提案されており,ドラフトが公開されている. draft-ietf-tls-tls13-11 - The Transport Layer Security (TLS) Protocol Version 1.3 TLS 1.2からの大きな変更点として,以下の2つがある. ハンドシェイクの省略によるRTT(Round Trip Time)の削減 危殆化した暗号の廃止 「危殆化した暗号」とは,Forward SecrecyでないCipher Suite(RSAのみを用いたもの)や,認証
前回の続き。 ディープラーニングのフレームワークであるTensorFlowを使用して株価を予想するぞ~、というお話です。ちなみに前回は完全に失敗でした。 前回のコメントで、tawagoさんから「Googleが同じようなことしている」という情報をいただいたので、そちらをコピ・・・インスパイアしてみました。 ##前回との相違点 前回は、「数日分の日経平均を使用して、次の日の日経平均が上がるか、下がるか、変わらないか(3択)を予想する」ものでした。 Googleのデモでは、「数日分の世界中の株価指数(ダウ、日経平均、FTSE100、DAXなど)を使用して、次の日のS&Pが上がるか下がるか(2択)を予想する」という内容でした。 ということで、下記が前回からの主な変更点となります。 「上がるか」「下がるか」の2択 日経平均だけでなく、他国の株価指数も使用 隠れ層x2、ユニット数は50,25 予想する
プログラムで使うことの多い「乱数」。ゲーム開発やビジュアルアート、ウェブサイトのアニメーションにおいて乱数は非常に重要で、さまざまな用途で利用されています。プログラムで一般に乱数と聞くと、すべての数値が同じ頻度(分布)で出現する「一様乱数」と呼ばれる乱数をイメージする方が多いと思います。 多くの場合はこの「一様乱数」で取得した乱数を用いれば十分でしょう。しかし、場合によっては「一様乱数」ではなく、偏りのある乱数を用いることでコンテンツの見た目や現象の「自然さ」を演出することが可能です。 実は「一様乱数」に一手間加えることで、乱数の分布の偏りを制御できます。今回は乱数を使用して好みの分布を得るためのパターンをいくつか紹介します。 乱数分布のシミュレーションデモ (HTML5製) 次のデモはリアルタイムで乱数の出現頻度を計算し、グラフに可視化するコンテンツです。画面下のプルダウンで乱数の種類を
ヤフー株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。LINEヤフー Tech Blog はじめに はじめまして、安藤義裕と申します。ヤフー株式会社データ&サイエンスソリューション統括本部ソリューション本部でプログラマーをしております。趣味はカミさんの手料理です。 機械学習で用いられるアルゴリズムの一つにニューラルネットワークがあります。ニューラルネットワークは脳細胞の働きにヒントを得て考えられたものです。今回扱う多層ニューラルネットワークはニューラルネットワークの中間層と呼ばれる部分を多層化したものです。近年話題に上ることの多い Deep Learning ではこの多層ニューラルネットワークが利用されています。 多層ニューラルネットワークは用途に応じて異なるネットワークが利用されます。画像処理では畳込みニューラルネッ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く