タグ

ブックマーク / www.riken.jp (8)

  • 国宝油滴天目茶碗の曜変(光彩)の秘密を探る

    理化学研究所(理研)光量子工学研究センター 先端光学素子開発チームの海老塚 昇 研究員と開拓研究部 石橋極微デバイス工学研究室の岡 隆之 専任研究員(研究当時)の研究チームは、国宝油滴天目(ゆてきてんもく)茶碗[1]の青紫色の光彩、いわゆる曜変(ようへん)の発色を油滴(油の滴に似た斑点)の反射と釉薬(ゆうやく、うわぐすり)の2次元回折格子[2]構造によって説明しました。 研究成果は油滴天目茶碗や曜変天目(ようへんてんもく)茶碗の鑑賞のために最適な照明を提案できる上、釉薬の配合や焼成(焼き締め、焼結)方法を解明する糸口になると期待されます。 曜変とは漆黒の釉薬が厚くかかった建盞(けんさん。中国の宋時代の10~13世紀に建窯(けんよう。中国福建省にあった名窯)において焼成された、鉄質黒釉(こくゆう)の天目茶碗)の内面に大小さまざまな斑点が浮かび、その周りが暈(かさ)のように青く輝き、その

    国宝油滴天目茶碗の曜変(光彩)の秘密を探る
  • 放射光施設でLEDが壊れる?その原因を解明

    大型放射光施設「SPring-8」は、SDGsや2050年カーボンニュートラル達成に向けた研究を支える施設で、施設のグリーン化も積極的に進めています。しかし、その過程で意外なところにネックがあったのです。高エネルギーの電磁波である放射線にさらされると、長寿命のはずのLEDが数カ月で点灯しなくなってしまいました。田中 均グループディレクター(GD)らはその原因を究明し、驚くほど簡単な解決方法を見いだしました。 放射線環境下ではLEDが使えない?! 施設のグリーン化の一環として、SPring-8でも、蛍光灯からLEDへの置き換えを実施している。ところが、加速器トンネル内のLEDは数カ月ですべて故障してしまった。強い放射線(X線)の影響と考えられたが、当時、LEDのメーカーでさえそのような故障が起きるとは認識しておらず、原因も分からなかった。田中GDはその原因を探ろうとチームを立ち上げた。 そん

    放射光施設でLEDが壊れる?その原因を解明
    aceraceae
    aceraceae 2022/09/19
    個人的にはすごく興味深かった。たしかに本来の研究の本質とは異なる話なんだけどこれはこれで実用技術として他の分野にもこの結果が広がっていくと思うし。
  • 炭素はどのようにしてつくられたのか

    私たちの体にも植物にも炭素はたくさん含まれています。この炭素という元素、そもそもどのようにしてつくられたのでしょうか。その解明のために、スーパーコンピュータ「富岳」で原子核の構造を計算したのが阿部喬協力研究員(以下、研究員)らです。研究開始から10年余り、これまでの理論物理の常識を覆す発見がありました。 誰も答えにたどりつけなかった難題 138億年前にビッグバンが起きたとき、宇宙に存在した元素は、ほぼ、水素とヘリウムだけ。核子(陽子と中性子)でできた原子核が衝突を繰り返し、核子数の多い元素がつくられてきた。英国の天文学者フレッド・ホイルは核子が12個の炭素について「核子が4個のヘリウムが3個合体する過程で生じる不安定状態があるはず」と1954年に予言した。後に、「ホイル状態」と呼ばれるようになったが、その構造は謎だった。 図1 炭素の原子核の成り立ち 陽子2個と中性子2個のヘリウムの原子核

    炭素はどのようにしてつくられたのか
    aceraceae
    aceraceae 2022/09/14
    フレッド・ホイル懐かしいな。「10月1日では遅すぎる」好きだった。
  • 4個の中性子だけでできた原子核を観測

    理化学研究所(理研)仁科加速器科学研究センター多種粒子測定装置開発チームの大津秀暁チームリーダー、スピン・アイソスピン研究室のバレリー・パニン特別研究員(研究当時、現客員研究員)、ダルムシュタット工科大学のメイテル・デュア研究員、ステファノス・パシャリス研究員(研究当時)、トーマス・オウマン教授、東京大学大学院理学系研究科附属原子核科学研究センターの下浦享教授(研究当時)、東京工業大学理学院物理学系の中村隆司教授、近藤洋介助教らの国際共同研究グループは、理研の重イオン[1]加速器施設「RIビームファクトリー(RIBF)[2]」の多種粒子測定装置「SAMURAIスペクトロメータ[3]」を用いて、4個の中性子だけでできた原子核「テトラ中性子核」の観測に成功し、陽子を含まない複数個の中性子が原子核を構成して存在できる新たな証拠を得ました。 研究成果は、陽子を1個も含まない、いわば「原子番号ゼロ

    4個の中性子だけでできた原子核を観測
  • 蒸発するブラックホールの内部を理論的に記述

    理化学研究所(理研)数理創造プログラムの横倉祐貴上級研究員らの共同研究チームは、量子力学[1]と一般相対性理論[2]を用いて、蒸発するブラックホールの内部を理論的に記述しました。 研究成果は、ブラックホールの正体に迫るものであり、遠い未来、情報[1]を蓄えるデバイスとしてブラックホールを活用する「ブラックホール工学」の基礎理論になると期待できます。 近年の観測により、ブラックホールの周辺のことについては徐々に分かってきましたが、その内部については、極めて強い重力によって信号が外にほとんど出てこられないため、何も分かっていません。また、ブラックホールは「ホーキング輻射[3]」によって蒸発することが理論的に示されており、内部にあった物質の持つ情報が蒸発後にどうなってしまうのかは、現代物理学における大きな未解決問題の一つです。 今回、共同研究チームは、ブラックホールの形成段階から蒸発の効果を直

    蒸発するブラックホールの内部を理論的に記述
  • 新粒子「ダイオメガ」 | 理化学研究所

    理化学研究所(理研)仁科加速器科学研究センター量子ハドロン物理学研究室の権業慎也基礎科学特別研究員、土井琢身専任研究員、数理創造プログラムの初田哲男プログラムディレクター、京都大学基礎物理学研究所の佐々木健志特任助教、青木慎也教授、大阪大学核物理研究センターの石井理修准教授らの共同研究グループ※「HAL QCD Collaboration[1]」は、スーパーコンピュータ「京」[2]を用いることで、新粒子「ダイオメガ(ΩΩ)」の存在を理論的に予言しました。 研究成果は、素粒子のクォーク[3]がどのように組み合わさって物質ができているのかという、現代物理学の根源的問題の解明につながると期待できます。 クォークには、アップ、ダウン、ストレンジ、チャーム、ボトム、トップの6種類があることが、小林誠博士と益川敏英博士(2008年ノーベル物理学賞受賞)により明らかにされました。陽子や中性子はアップク

    aceraceae
    aceraceae 2018/05/24
    クオーク6個シリーズはほかにもありそうなのがてくるのかな。それはともかく南部博士でガッチャマンを思い出してしまったわたしは
  • 乱雑さを決める時間の対称性を発見 | 理化学研究所

    要旨 理化学研究所(理研)理論科学連携研究推進グループ分野横断型計算科学連携研究チームの横倉祐貴基礎科学特別研究員と京都大学大学院理学研究科物理学宇宙物理学専攻の佐々真一教授の共同研究チームは、物質を構成する粒子の“乱雑さ”を決める時間の対称性[1]を発見しました。 乱雑さは、「エントロピー[2]」と呼ばれる量によって表わされます。エントロピーはマクロな物質の性質をつかさどる量として19世紀中頃に見い出され、その後、さまざまな分野に広がりました。20世紀初頭には、物理学者のボルツマン、ギブス、アインシュタインらの理論を踏まえて「多数のミクロな粒子を含んだ断熱容器の体積が非常にゆっくり変化する場合、乱雑さは一定に保たれ、エントロピーは変化しない」という性質が議論されました。同じ頃、数学者のネーターによって「対称性がある場合、時間変化のもとで一定に保たれる量(保存量)が存在する」という定理が証

  • 404 Not Found | 理化学研究所

    お探しのページが見つかりませんでした。 誠に恐れ入りますが、お客様がアクセスしようとしたページまたはファイルが見つかりませんでした。 お探しのページは、削除または名前が変更された、もしくは一時的に使用できなくなっている可能性がございます。

    aceraceae
    aceraceae 2014/03/05
  • 1