2019年新卒研修で使った資料です。 内部実装の雰囲気を感じとりながら、Redisについて理解を深める研修を行いました。 以下の内容について学びました。 1. Redisの概要 2. 社内での利用方法 3. 正しい用法用量 Redis についての前提知識は必要としていません。…

"Nested Loop Joinしか取り上げて無いのにタイトルが大きすぎないか" と指摘を頂いたので、タイトルを修正しました。Merge JoinとHash Joinのことはまた今度書こうと思います。 「JOINは遅い」とよく言われます。特にRDBを使い始めて間がない内にそういう言説に触れた結果「JOIN=悪」という認識で固定化されてしまっている人も多いように感じています。 たしかに、JOINを含むようなSELECT文は、含まないものに比べて重たくなる傾向があることは事実です。また、本質的に問い合わせたい内容が複雑で、対処することが難しいものも存在します。しかし、RDBの中で一体どういうことが起きているのかを知り、それに基いて対処すれば高速化できることも少なくないと考えています。 本稿では、JOINの内部動作を解説した上で、Webサービスを作っているとよく出てくるJOIN SQLを例題に
■ インデックスとは データベースの世界で、インデックス(索引)とはテーブルに格納されているデータを 高速に取り出す為の仕組みを意味します。 インデックスを適切に使用することによってSQL文の応答時間が劇的に改善 される可能性があります。 インデックスにはB-Treeインデックスをはじめ、ビットマップインデックス、 関数インデックスなどの種類がありますが、ここでは最も一般的に使われ、かつ ほとんどのDBMSでサポートされているB-Treeインデックスについて解説します。 ※ CREATE INDEX文でオプションを指定しない場合は通常B-Treeインデックスが 作成されます。 ■ B-Treeインデックスのしくみ B-Tree(Balanced Tree)インデックスは次のようなツリー状の構造になっています。 ツリーの先頭はヘッダブロックと呼ばれています。ヘッダブロックでは、キー値の 範囲
SQLアタマアカデミー 第7回性能改善の鍵、インデックスの特性を知る~B-treeとハッシュ (1)B-tree はじめに データベースを扱う仕事をしていると、パフォーマンスの問題に悩まされることは日常茶飯事です。とくに最近は、データベースに格納されるデータ量が飛躍的に増え、サーバのCPUやメモリといったハード面の増強だけでは追いつかないことも多くあります。 そのようなケースに対応するため、DBMSは性能改善のための手段を多く用意しています。その中で最もコストパフォーマンスの良い方法が、インデックス(索引)です。アプリケーションにもハード構成にも影響を与えずに実行でき、うまくいかなければすぐに削除できるという手軽さが大きな魅力で、効果はしばしば絶大です。 インデックスにはいろいろな種類があり、またDBMSによってもサポートする種類に差がありますが、本稿では最も重要な2つを取り上げます。それ
相対性理論のボーカルが頭から離れないmikioです。熱いわっふるの声に応えて今回はTokyo Cabinetのテーブルデータベースにおける検索機能の実装について語ってみたいと思います。とても長いのですが、最後まで読んだあかつきには、自分でも全文検索エンジンを作れると思っていただければ嬉しいです。 デモ モチベーションをあげていただくために、100行のソースコードで検索UIのデモを作ってみました。Java 6の日本語文書を対象としているので、「stringbuffer」とか「コンパイル」とか「倍精度浮動小数」とかそれっぽい用語で検索してみてください。 インデックスがちゃんとできていれば、たった100行で某検索エンジン風味の検索機能をあなたのデータを対象にして動かすことができます。ソースコードはこちら(テンプレートはこちら)です。 でも、今回はUIの話ではないのです。ものすごく地味に、全文検索
最近,学部生に「DBについて勉強したいんですが何かオススメ参考書はありますか?」と聞かれた.私自身も,DBについて勉強したいなぁと感じていた.というのも,この頃院の授業で正規化の辺りを突っ込んでやったり,授業では習わない類のクエリを書いたり,数万件以上のデータを処理したり・・・とやっているうちにどうにも自分の知識不足を感じたからだ.学部の時は授業で理論の基本的なところを習って,あとはDBを利用したちょっとしたWebサービスを作ったくらいで,ちゃんと理解してこなかったから仕方ないといえばそうなんですが。。。まぁせっかくなので,DB関係の本で私がオススメかなーと思う本を挙げておきます(・ω・*) ●はじめの一歩DBについて勉強しようと思って一番最初に思い出したのは「マンガでわかるデータベース」という本.マンガでわかるデータベース作者: 高橋麻奈, あづま笙子, トレンドプロ出版社/メーカー:
先日のエントリで少し話したのですが、僕が在学していたときの東大にはデータベースを学ぶためのコースというものがありませんでした(DB関係の授業は年に1つか2つある程度。現在はどうなんだろう?)。そんなときに役だったのは、やはり教科書。読みやすいものから順に紹介していきます。(とはいってもすべて英語の本です。あしからず) 一番のお薦めは、Raghu Ramakrishnan先生 (現在は、Yahoo! Research) の「Database Management Systems (3rd Edition)」。初学者から研究者まで幅広く使えます。データベース管理システム(DBMS)の基本概念から、問い合わせ最適化、トランザクション管理など、これらを実装・評価するために必要な、「DBの世界での常識」が、丁寧な語り口でふんだんに盛り込まれています。この1冊を読んでおけば、DBの世界で議論するための
チャリンコ通勤による滝のような汗で、朝からTシャツがシースルーになってしまうmikioです。さて今回は、Tokyo Cabinet(TC)のデータベースを各種のアルゴリズムで圧縮して利用する方法についてご紹介します。 圧縮B+木 B+木とは、比較関数の値による順序が近いレコード群を単一のページにまとめ、各ページにB木(multiway balanced treeの略であり、二分木(binary tree)とは違います)の索引を張ったものです。理論的にはレコードの探索も更新も O(log n) の時間計算量で行え、内部ノード(B木)の操作をキャッシュすると実質的には O(1) の時間計算量で探索や更新が行えるという、かなり安定した性能を備えるデータ構造です。その上、レコードが一定の順序に基づいて並べられているので、数値の範囲検索や文字列の前方一致検索が高速に行えたり、カーソルによって順序に基
前回は形態素解析を使う検索エンジンのしくみについて説明しました。今回は、FINDSPOTで使用しているN-gramという検索エンジンのしくみについて説明します。 N-gramによる見出し語の切り出し 前回は、形態素解析による検索エンジンでは、検索可能な最小単位が分かち書きの切り分け単位となる点を説明しました。 一方、N-gramを使った検索エンジンでは、単純に文字の並びを見出し語としてインデックスを作成します。1文字を元にインデックスを作成する方法をユニグラム、2文字の並びを元にインデックスを作成する方法をバイグラム、3文字の並びを元にインデックスを作成する方法をトリグラムと呼んでいます。 1文字:ユニグラム 2文字:バイグラム 3文字:トリグラム N-gramによる見出し語の切り出しは、形態素解析のための文法解析を伴わないため、特定の自然言語に依存しないという特徴があります。 FINDS
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く