著者 神嶌 敏弘 (Toshihiro Kamishima) リリース 2020-02-17 08:56:35 +0900 ダウンロード用 [ PDF版 ] [ ePub版 ] ソースレポジトリ [ https://github.com/tkamishima/mlmpy ]
のような感じにエンコードされることが分かります。 自分の好きなデータで試すことができて便利!という話でした。 PS. 以下は実行結果です。 % make % gzip < alice.txt > alice.txt.gz % ./puff -10 alice.txt.gz puff() succeeded uncompressing 1328 bytes 8 compressed bytes unused inpos=406,inbits=224,outpos=0,outbytes=45 41 6c 69 63 65 20 77 61 73 20 62 65 67 69 6e 6e 69 6e 67 20 74 6f 20 67 65 74 20 76 65 72 79 20 74 69 72 65 64 20 6f 66 20 73 69 74 74 A l i c e w a s b
制約条件付きの非線形最適化に対する数値アルゴリズムは,大まかに分けると勾配法と直接探索法とに分けられる.勾配法では,第1導関数(勾配)か第2導関数(ヘッシアン)が使われる.この例には逐次二次計画(SQP)法,拡大ラグランジュ法,非線形内点法がある.直接探索法では,導関数情報は使われない.この例としては,Nelder-Mead法,遺伝的アルゴリズム,微分進化法,焼きなまし法がある.直接探索法の方が収束が遅い傾向があるが,関数と制約条件のノイズの存在への耐性は強い. 通常,アルゴリズムは問題の局所的なモデルを構築するだけである.また,そのようなアルゴリズムの多くは目的関数の減少,目的関数と制約条件の組み合わせであるメリット関数の減少を要求し,反復プロセスの収束を確実にする.収束した場合,このアルゴリズムは局所的最適値だけを見付けるため,「局所的最適化アルゴリズム」と呼ばれる.Mathemati
Simulated Annealing/SA -概論- 1.はじめに 一般に最適化問題とは,ある制約条件下において, 与えられた状態空間で定義された関数の最大値または最小値を与える状態空間の要素を求める. シミュレーテッドアニーリング(Simulated Annealing)は,最適化問題を解く汎用近似解法の一つである. この方法は,Fig.1のように高温で加熱した金属を徐々に少しずつ温度を下げて冷やすことによって, 元の金属より欠陥の少ない優れた結晶構造を作る物理プロセス(アニーリング)に着想を得て, これを計算機上で模擬することにより最適化問題を解こうとする手法である. Fig.1 高温時から低温時への徐冷に伴う原子の配列 2.SAの特徴 <長所> ・ 頑強性・・・多くの最適化解法が局所最適化に補足される欠点を持つのに対し,SAは用意には局所最適解につか まらず,理論上は真の最適解
Semi supervised, weakly-supervised, unsupervised, and active learning
はじめての機械学習 作者: 小高知宏出版社/メーカー: オーム社発売日: 2011/04/22メディア: 単行本(ソフトカバー)購入: 6人 クリック: 99回この商品を含むブログ (9件) を見る はじめての機械学習 はじめての機械学習という本を読んで学んだことをまとめます。自分で理解した言葉としてまとめています。原文とは異なる可能性があります。またその他自分で勉強した内容についても紹介します。 機械学習とは パラメータ調整による学習 帰納的学習 教示的学習 進化的手法による規則学習 ニューラルネット 機械学習ライブラリ その他用語 機械学習とは 「生物」以外の「機械」が学習を行う事。 過去のデータやとある局面のデータを学習して新たな局面に当てはまる有効な知識構成を「汎化」と呼ぶ。 機械学習はゲーム研究での適用が始まりで、人口知能と人間の対戦だった。 評価関数の評価値が高くなるようなパラ
paizaオンラインハッカソンPOH![ポー!]中間レポート――1週間で1万5,000ものコードが提出される! 2013年12月2日より開始したpaizaオンラインハッカソンVol1「新人女子の書いたコードを直すだけの簡単なお仕事です!」ですが、おかげ様で1週間で15,000ものコード提出を頂けています。今回は皆さんのチャレンジの様子について中間レポートをお届けします。 paizaオンラインハッカソンVol1 https://paiza.jp/poh/ec-campaign paizaオンラインハッカソンとは? 「paizaオンラインハッカソン(略してPOH![ポー!])」はオンラインで誰でも気軽に参加できるハッカソンを目指しているので、とくに会員登録などをしなくても参加できるような仕組みとなっています。このハッカソンは、1つの課題に対してどのようにコードを書くかより深く考えるきっかけ
開発したいプログラム ECサイト内の2つの異なる商品(値段は同じでも構わない)を購入し、その合計価格が指定の価格以内で最大になる組み合せを探してください。 →問題詳細 新人女子プログラマの野田さんが途中まで書いたプログラム Item_a_b = 4500 // a+bの価格 Item_a_c = 500 // a+cの価格 Item_a_d = 2300 // a+dの価格 Item_b_a = 1240 // b+aの価格 Item_b_c = 5020 // b+cの価格 (中略) if Item_a_b == campaign_price print “AとBの組み合わせが最大!” if Item_a_b == campaign_price -10 print “AとBの組み合わせは-10円差でおしい!” if Item_a_c == campaign_price (以下略)
Javaに限った話ではないのだけど、Javaで並列加算が気軽にできるようになったので、気に留めておいたほうがいい話。 まず、次のようなコードを動かしてみます。 public static void main(String[] args){ double[] data = { 1.234E80, -1.234E80, 2, 3}; System.out.println(Arrays.stream(data).sum()); System.out.println(Arrays.stream(data).parallel().sum()); } 1.234×10^80と-1.234×10^80という、桁が大きくて符号の違う数を並べて、そのあとに2と3という1桁の数値を置いています。 これらを加算すると、1.234×10^80と-1.234×10^80は符号が違うだけなので、当然結果は0になります
ネット上で見かけるマルコフ連鎖モンテカルロ法資料はどうも小難しいので、 マルコフ連鎖モンテカルロ法は全然難しくないということを伝えるべく平易に解説した資料を作ってみた。 2状態離散モデルの解説を中心に、メトロポリス法の解説までを行った。 余裕があれば次は連続モデルや熱浴法・メトロポリスヘイスティング法の解説資料も作成したい。 マルコフ連鎖モンテカルロ法入門-1View more presentations from teramonagi .※ここで解説しているお天気推移モデルはオリジナルなものですので、数値・計算等にミスがある可能性が否めませんので、 ※もし間違いを見かけた方は優しく教えていただけると助かります。
12月くらいからMCMCの勉強しだして、いくつか代表的なアルゴリズムによるサンプリングをやったのでまとめておく。 Example of Rejection Sampling - yasuhisa's blog Example of importance sampling - yasuhisa's blog Example of Metropolis Hastings Algorithm - yasuhisa's blog Metropolis Hastings Algorithmの続き - yasuhisa's blog Gibbs Sampler Algorithmによって多変量正規分布からのサンプル抽出を行なう - yasuhisa's blog あとはモデルによって色々変わるけど、根幹となるアルゴリズムはできたからまあよいか。 これで一応自分で作れるという感じにはなったので、MCMC
(2013/11/08: 補足を書きました。Googleのヒット件数について(続き)) 「Googleの検索件数は当てにならない」と言うと、多くの人は「何をいまさら」という反応かもしれません。 当てにならないことぐらいわかってるよ、と。 でも、「当てにならない」でイメージするものがどの程度かは人によって違うと思います。 結果が2倍ぐらい違ったりする、程度に思っている人もいるかもしれません。 しかし、実際はそんなレベルでの話ではありません。 「本当は50件なのに500,000件と返ってくる」ようなことも珍しくありません。 たとえば、ツイッターで見たネタなのですが、"無い内定式" というキーワードで検索してみます。 267,000件。 多いですね。 ここで、10ページ目をクリックすると、次のようになります。 「59 件中 6 ページ目」*1 一気に4桁も減ってしまいました。 どちらが本当の数字
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く