タグ

2015年3月11日のブックマーク (2件)

  • 回帰モデルにおけるL1正則化とL2正則化の効果 - old school magic

    概要 回帰モデルとは、与えられた入力を用いて目標変数を予測するモデルです。 回帰モデルでは過学習を防ぐため、誤差関数(二乗誤差関数など)に次の式で表される正則化項を加えて最小化します。 この形の正則化項を用いる回帰をブリッジ回帰と呼びます。 特にの時をLasso回帰、の時をRidge回帰と呼びます。また、それぞれに用いられている正則加項をL1ノルム、L2ノルムと呼びます。 L1ノルムとL2ノルムの特徴を簡単にまとめると次のようになります。 L1ノルムはパラメータの一部を完全に0にするため、モデルの推定と変数選択を同時に行うことができる 特に次元数>>データ数の状況で強力 L2ノルムは微分可能であり解析的に解けるが、L1ノルムは 解析的に計算出来ない L1ノルムには様々な推定アルゴリズムが提案されている また、L1ノルムには 次元が標数より大きい時、高々個の変数まて

  • コンピュータシステムの理論と実装

    コンピュータを理解するための最善の方法はゼロからコンピュータを作ることです。コンピュータの構成要素は、ハードウェア、ソフトウェア、コンパイラ、OSに大別できます。書では、これらコンピュータの構成要素をひとつずつ組み立てます。具体的には、NANDという電子素子からスタートし、論理ゲート、加算器、CPUを設計します。そして、オペレーティングシステム、コンパイラ、バーチャルマシンなどを実装しコンピュータを完成させて、最後にその上でアプリケーション(テトリスなど)を動作させます。実行環境はJavaMacWindowsLinuxで動作)。 ● 書のサポートサイト ● 書で使用するツール「Nand2tetris Software Suite」 ● 「Nand2tetris Software Suite」のチュートリアル 目次 賞賛の声 訳者まえがき:NANDからテトリスへ まえがき イント

    コンピュータシステムの理論と実装
    aidiary
    aidiary 2015/03/11