今回は、Deep Learningの画像応用において代表的なモデルであるVGG16をKerasから使ってみた。この学習済みのVGG16モデルは画像に関するいろいろな面白い実験をする際の基礎になるためKerasで取り扱う方法をちゃんと理解しておきたい。 ソースコード: test_vgg16 VGG16の概要 VGG16*1は2014年のILSVRC(ImageNet Large Scale Visual Recognition Challenge)で提案された畳み込み13層とフル結合3層の計16層から成る畳み込みニューラルネットワーク。層の数が多いだけで一般的な畳み込みニューラルネットと大きな違いはなく、同時期に提案されたGoogLeNetに比べるとシンプルでわかりやすい。ImageNetと呼ばれる大規模な画像データセットを使って訓練したモデルが公開されている。 VGG16の出力層は1000