タグ

数学に関するanosutekiのブックマーク (10)

  • 高校生がアルゴリズムとスパコンの力で、京都の碁盤目状道路を13.9%効率化した話 - Qiita

    2. 研究で解く問題 「いざ研究しよう!」と思っても、条件や設定を決めないと何も始まりません。 まずは研究を分かりやすくするために、「一つの問題」に落とし込むことにしました。 問題設定 縦 $N$ 行・横 $N$ 列の大きさの碁盤の目があります。隣り合う交差点間の距離は 1 です。つまり、交差点が合計で $N^2$ 個あり、それぞれ座標 $(1, 1), (1, 2), ..., (1, N),$ $(2, 1), (2, 2), ..., (N, N-1), (N, N)$ に位置すると考えることもできます。 下の図は、$N = 4$ の場合の交差点の位置です。 あなたは、碁盤の目の交差点の位置は変えずに、道路の並びのみを変えることができます。上手く道路の並びを変えることで、できるだけ「便利」な道路網を建設してください。 「便利な道路網」って何? 私は、以下の 2 つの条件を満たす道路

    高校生がアルゴリズムとスパコンの力で、京都の碁盤目状道路を13.9%効率化した話 - Qiita
  • 再帰関数を学ぶと、どんな世界が広がるか - Qiita

    0. はじめに 再帰関数は初めて学ぶときに壁になりがちで なんとなくわかった...けれど どんな場面で使えるのだろう...いい感じの例を探したい! という気持ちになりがちです。再帰関数は、なかなかその動きを直感的に想像することが難しいため、掴み所が無いと感じてしまいそうです。 そこで記事では 再帰関数の動きを追いまくることで、再帰関数自体に慣れる 再帰的なアルゴリズムの実例に多数触れることで、世界を大きく広げる! ことを目標とします。特に「再帰関数がどういうものかはわかったけど、使いどころがわからない」という方のモヤモヤ感を少しでも晴らすことができたら嬉しいです。なお記事では、ソースコード例に用いるプログラミング言語として C++ を用いておりますが、基的にはプログラミング言語に依存しない部分についての解説を行っています。 追記 1. 再帰関数とは 再帰の意味はとても広いです。自分自

    再帰関数を学ぶと、どんな世界が広がるか - Qiita
  • 何なんだろうな。あいじょうって。「10のi乗」みたいな数を考える - アジマティクス

    みなさんは、好きな複素数ってありますか?(ただし実数は除く) 「好きな整数」を持ってる人なら少なくないと思います。それこそラッキー7の7とか。自分の誕生日とか。691とか。 「好きな実数」まで広げても、eとかπとかとか、いろいろあるでしょう。 でも、「複素数」となると? 「私の好きな複素数は○○です」って言ってる人、ほとんど聞いたことないです。あったとしても、2乗して-1の「」そのものとか、3乗すると1になる「ω()」とかぐらいのものでしょう。 これって不思議だと思うんですよね。整数だったら2でも3でも163でも、それぞれに面白い性質が山ほどあることを思うと、例えば「」や「」などという個別の複素数にもそれぞれに面白い性質はいくらでもある、と考えるのは当然でしょう。でも、個別の整数について面白い性質を知っているほどには、個別の複素数の持つ面白い性質をわれわれは知らない。不思議です。 そういう

    何なんだろうな。あいじょうって。「10のi乗」みたいな数を考える - アジマティクス
  • 【GIF多め】ギャラリー:目で見る複素数 - アジマティクス

    2乗して-1になる数「」と、実数を使って「」と表される数を複素数といいます。 複素数は、和をとったり積をとったり逆数をとったりといろいろできるわけですが、それらを図示してみるときれいな構造が見えることがあります。 この記事は、細かい解説はそこそこにして、複素数を眺めてうわ〜きれいだね〜素敵だね〜っていう記事です。 複素平面 任意の複素数は、平面上の一点として表すことができます。 今でこそ「複素数といえば平面」というイメージがあるかもしれませんが、「複素数を平面上の一点として表す」というのは驚くほど画期的なアイデアです。 それまで、複素数は「方程式を解く途中にだけ出てきて、いざ解かれたあかつきには消えてしまう」という「便宜的な数」「虚構の数」と思われていました。 ガウスによって「複素平面」のアイデアが導入されてようやく複素数が図形的な表れを伴った。複素数にはそんな歴史があるようです。 複素数

    【GIF多め】ギャラリー:目で見る複素数 - アジマティクス
  • サービス終了のお知らせ

  • 記事一覧 - INTEGERS

    旧知の仲である数学者 齋藤 耕太 氏(筑波大学、学振PD)が、昨日数学の未解決問題を解決したとするプレプリントをプリプリントサーバーarXivに投稿されました:arxiv.org論文自体は「現状分かるところまで研究しつくす」という素晴らしい態度で執筆されてい…

    記事一覧 - INTEGERS
  • とある517桁の素数 - INTEGERS

    この記事は非公開化されました。 integers.hatenablog.com 非公開前の内容要約: ある517桁の素数の紹介。 この記事の内容は部分的に書籍『せいすうたん1』の第12話に収録されています。 integers.hatenablog.com

    とある517桁の素数 - INTEGERS
  • 整数のない数学体系について - 1400字制限

    テッド・チャンの「あなたの人生の物語」は、物理認識が人間とまるで異なる宇宙人とのファースト・コンタクトを描いたSFである。我々が物理を各時刻に起きる相互作用として微分的に認識しているのに対し、作に出てくるヘプタポッドなる生物は変分原理をベースとして積分的に(と言うべきだろうか)世界を認識している。 あなたの人生の物語 (ハヤカワ文庫SF) 作者: テッド・チャン,公手成幸,浅倉久志,古沢嘉通,嶋田洋一 出版社/メーカー: 早川書房 発売日: 2003/09/30 メディア: 文庫 購入: 40人 クリック: 509回 この商品を含むブログ (399件) を見る (ちなみに映画化もされたが、こっちは物理認識のエッセンスが出てこないのでこの話とは関係ない。) というわけで僕も数学認識が人類とまったく違う生物を描いたSFを書いてみたいと思う。二番煎じもはなはだしいが、二番煎じでも十分に味がある

    整数のない数学体系について - 1400字制限
  • 15歳女子が「フィボナッチ数列は2進数でも美しいのか」を考察 「MATHコン」で日本数学検定協会賞を受賞 | 公益財団法人 日本数学検定協会

    協会案内 当協会の基理念や法人概要、採用情報についてご覧になれます。 検定・資格 各検定・資格サイトへのご案内や、算数・数学の指導資格につていご覧になれます。 ソリューション 学校や企業、自治体に向けた、人財育成支援、スキル評価支援などについてご覧になれます。 セミナー・講習 当協会が主催・参画している各種セミナーや講習についてご覧になれます。 各種メディア 各オウンドメディアへやイベントサイト、各種コンテンツの案内がご覧になれます。 お知らせ プレスリリース お問い合わせ・資料請求 検定・資格サイト 実用数学技能検定「数検」(数学検定・算数検定) ビジネス数学検定 データサイエンス数学ストラテジスト オウンドメディア サイトのご利用にあたって 個人情報保護方針 情報セキュリティ方針

    15歳女子が「フィボナッチ数列は2進数でも美しいのか」を考察 「MATHコン」で日本数学検定協会賞を受賞 | 公益財団法人 日本数学検定協会
  • 第1回 環の定義 - Pythonで学ぶ「プログラミング可換環論」

    はじめに どうも初めまして、グレブナー基底大好きbot (Twitter:@groebner_basis) です。 最近、プログラマ向けの数学のセミナーや勉強会*1が開催されるなど、コンピュータを専門にする人が純粋数学に興味を持つ機会が増えてきました。 そこで、この記事では、計算科学とも関わりの深い「可換環論」について、プログラミングの側面から解説していきたいと思います。 可換環論とは 可換環論は、代数学に含まれる分野で、140年以上の歴史があります。名前の通り、「可換環」と呼ばれる数学的対象を研究する分野です。この可換環については、後々詳しく説明したいと思います。 かつての数学者は、計算といえば紙に書く「手計算」が主な手法でした。しかし、近年では、コンピュータの発達に伴い、可換環論の色々な計算が数式処理システム(Computer Algebra System) で実現できるようになりまし

    第1回 環の定義 - Pythonで学ぶ「プログラミング可換環論」
    anosuteki
    anosuteki 2017/10/23
    定義1.の3がわからなくて死んだ。今度再チャレンジ
  • 1