1: 購入 0: 閲覧(したが購入してない) -: 未観測 ユーザーベース型 ユーザー同士の類似度を計算 「あなたと購入履歴の似たユーザーはこんな商品を買っています」 行を各ユーザーのベクトルとみなして、似たユーザーを見つける(上位N人) 似たユーザーが購入しているアイテムを推薦する(N人の平均値などで購入しそうな順に提示) アイテムベース型 アイテム同士の類似度を計算 「この商品を買ったユーザーはこんな商品も買ってます」 列を各アイテムのベクトルとみなして、類似度の高いアイテムを推薦する(上位M件) 類似度計算には、コサイン類似度やJaccard類似度が使われる。 類似度を計算する際に、未観測「-」は適当な値(0, 0.5など)で埋めるか、無視をする。 ログデータを使うため、情報の少ない新規アイテム/新規ユーザーに弱いコールドスタート問題がある。 コンテンツベースフィルタリング アイテム