In machine learning, support vector machines (SVMs, also support vector networks[1]) are supervised max-margin models with associated learning algorithms that analyze data for classification and regression analysis. Developed at AT&T Bell Laboratories,[1][2] SVMs are one of the most studied models, being based on statistical learning frameworks of VC theory proposed by Vapnik (1982, 1995) and Cher
人間には卓越した学習能力が備わっている.人間は目で見たり,耳で聞いたものが何であるかをいとも簡単に認識できる.また,未知の環境に適応する能力も優れている.それに対し,コンピュータは,与えられた指示(プログラム)どおりに高速に計算を行う能力においては優れているが,学習能力という点においては,人間とは比較にならない. そこで,人間のような学習能力をもった機械(モデル)を作るための学習理論が発達してきた.その代表的な成果の1つとして,多層パーセプトロンが挙げられる.多層パーセプトロンは1980年代に開発され,これまで多方面に応用されてきた.しかし,望ましくない局所最適解への収束,中間層の素子数の選択など,いくつかの問題点がある. サポートベクターマシン(Support Vector Machine:SVM) は,このような問題を解決した学習機械として知られている.サポートベクターマシンとは,1
最近よく巷で耳にするモノ. SVM, Support Vector Machine, さぽーとべくたーましん. これっていったい,どんなもんなんでしょう. なにやら便利そうなモノらしいので,ちょいと調べて要点をまとめてみようかな,なんて. でも,ただまとめただけだとそのへんの記事を読むのとなんにも変わらないので, コーディングするために必要な知識を中心にまとめてみることにします.
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く