運営元のロゴ Copyright © 2007-2024 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します。個別にライセンスが設定されている記事等はそのライセンスに従います。
さらに詳細な利用方法が知りたい方は、Yahoo!デベロッパーズネットワークのマニュアルを参照してください。 ベイジアンフィルタの実装 ここから本格的にベイジアンフィルタの実装に入っていきます。 その前に、まずは先程のリスト1のコードを利用して入力された文章をわかち書きし、単語の集合を返す関数を作成しnaivebayes.pyとして保存しましょう。こちらも先程のmorphological.pyと同様にutf-8で保存してください。 リスト2 文章の分割をする関数(naivebayes.py) # -*- coding: utf-8 -*- import math import sys #yahoo!形態素解析 import morphological def getwords(doc): words = [s.lower() for s in morphological.split(doc)
なぜアルゴリズムを学ぶのか GCによる停止時間が長くなり、アプリケーションの処理時間が短くなると、業務に使える時間が短くなってしまいます。その問題を解決するために、GCをチューニングすることで、アプリケーションの停止時間を短くすることが考えられます。 その際大事なのは、GCのアルゴルズムを把握しておくことです。 GCのチューニングを行うときは、GCで行われている処理の内、どの処理に時間がかかっているかをモニタリング⇒分析⇒チューニングする、という流れになります。しかし、GCのアルゴリズムを知らないと、モニタリング結果を見てもどこに問題があるかがわからず、分析やチューニングを行うことができません。 今回は、以下の4つのアルゴリズムをご紹介します。 マーク&スイープGC コンパクション コピーGC 世代別GC GCのアルゴリズムはJVMの実装によって異なりますが、多くの場合、上記4つのアルゴリ
はじめに 検索エンジンと聞くと、みなさんは何を思い浮かべるでしょうか? GoogleやYahoo!などの検索ページを思い浮かべる方がほとんどだと思います。近年は、それら企業の努力によって検索エンジンというものが非常に身近になり、私たちの生活に欠かせないものとなりつつあります。 しかし、検索エンジンと一言で言っても、上記のような一般の方々へのUI(ユーザインターフェース)を指す場合もあれば、そのUIの裏側(バックエンド)にあるシステムを指す場合もあります。 本連載では、Google,Yahoo!などを代表とする検索エンジンの裏側のしくみに着目し、検索エンジンというシステムのアーキテクチャやその内部で使われているデータ構造やアルゴリズムを、近年の手法や研究事例などを交えて解説していきたいと思っています。 検索エンジンとは 検索エンジンには、さまざまな種類があります。GoogleのWeb検索のよ
先行発売で、検索エンジン自作入門を購入しました。まだペラペラと眺めている状況ですが、これが非常に面白いです。 「検索エンジン自作入門」は、集めた文章をいかに整理するかをテーマとして扱っている本です。整理するという意味は、検索エンジンを利用するというライフハック的な意味ではありません。整理する為の検索エンジン自体を自分で作ることで理解するという、極めて硬派な本です。 「検索エンジン自作入門」とは? 「検索エンジン自作入門」は、未踏IT人材発掘・育成事業にスーパークリエータに認定された山田浩之氏と、Senna/groongaの開発者の末永匡氏の共著です。検索エンジンについて語らせたら、日本でこれ以上の人たちはいないだろうという組み合わせです。ということで、内容は非常に濃いのですが、難しい内容を解りやすく解説されています。 一方で、扱っている内容は非常にマニアックです。下に目次付けておくので見て
株式会社ミクシィ 研究開発グループの前坂です。前回の記事でmemcachedは分散に長けた高速なキャッシュサーバであることが紹介されました。今回はmemcachedの内部構造がどう実装されているのか、そしてメモリがどう管理されているのかをご紹介します。また、memcachedの内部構造の事情による弱点も紹介します。 メモリを整理して再利用するSlab Allocationメカニズム 昨今のmemcachedはデフォルトでSlab Allocatorというメカニズムを使ってメモリの確保・管理を行っています。このメカニズムが登場する以前のメモリ確保の戦略は、単純にすべてのレコードに対してmallocとfreeを行うといったものでした。しがしながら、このアプローチではメモリにフラグメンテーション(断片化)を発生させてしまい、OSのメモリマネージャに負荷をかけ、最悪の場合だとmemcachedのプ
テクスチャマッピングに変革をもたらす「Ptex法」とは? 無駄なメモリ消費を減らす技術の正体に迫る ライター:西川善司 竹重雅也氏(Developer Technology Engineer,NVIDIA) テクスチャマッピングの世界に「Ptex」と呼ばれる新たな手法が登場して,注目を集め始めている。先頃行われたCEDEC 2014でも,NVIDIAの竹重雅也氏が「リアルタイムレンダリングにおけるPtex手法について」と題した講演を行い,この新しい手法の利点と課題を説明した。そこで本稿では,竹重氏による講演の概要をレポートしたい。 テクスチャマッピング技術が抱える問題とは? CGの世界に限ったことではないが,長らく使われてきた手法が必ずしも良いものだとは限らない。優れた方法が別にあると分かっていたとしても,ハードウェア性能の限界などによって「その手法しか選べない」ということはままある。そし
障害に強い、問題が起こりにくいコードにはまず正しいアルゴリズムの選択から。理論だけでなく実践的側面を重視した、新しいタイプのアルゴリズムの書籍です。適切な問題解決、性能改善という、現場が求める2つの大きな要求に応えるため、どのアルゴリズムを使うべきか、どう実装するのか、さらに性能を向上させる方法はあるのかを、C、C++、Java、Rubyなど、さまざまな言語を使って説明します。図、表、サンプルコードがふんだんに盛り込まれ、付録にベンチマークのための知識、手法を紹介するなど、非常に実際的、実践的な一冊です。 正誤表 ここで紹介する正誤表には、書籍発行後に気づいた誤植や更新された情報を掲載しています。以下のリストに記載の年月は、正誤表を作成し、増刷書籍を印刷した月です。お手持ちの書籍では、すでに修正が施されている場合がありますので、書籍最終ページの奥付でお手持ちの書籍の刷版、刷り年月日をご確認
あ、どうも。なんかアルゴリズムさんと気が合いそうかなって。 マッチングサイトは、人と人の色恋の場だけの話じゃないわけです。一緒に働く仲間や、旅するパートナーをマッチングさせる場合もあるわけです。そもそも、人と人だけがマッチングのすべてではないのです。アルゴリズムと私の出会いだって立派なマッチングですから。 とあるスタートアップサーヴィスのAlgorithmiaは、アルゴリズムのマッチングが目当て。研究者やデータ分析を行なう人が、自分の持つデータをどのようなアルゴリズムで解けばいいのか、それをマッチングしてくれます。 アカデミックな業界では、日々多くの研究で専用のアルゴリズムが作られ使われていますが、そのアルゴリズムが他の研究で使われることはあまりありません。たとえ1つの研究のために特別に作られたアルゴリズムでも、他の研究でちょっと目線を変えれば使えることが多々あるのに…これはもったいない。
MORE INFORMATION Nama : QQDeluxe Website : http://qqdeluxe6.com Server : QQSLOT Negara : Indonesia Min Deposit : Rp 20.000 Deposit via : Bank, Pulsa, E-wallet Platform : Windows, IOS, Android Situs Slot Indonesia, Judi Slot Online Terpercaya Game Slot Online merupakan jenis permainan yang saat ini menjadi primadona di kalangan masyarakat Indonesia. Permainan slot online memiliki sistem yang sangat
本書は、「多腕バンディット問題」と呼ばれる問題を解くためのアルゴリズムを、Webサイトの最適化という例をもとに解説する書籍です。 バンディットアルゴリズムに関する基本的な知識について、既存研究についての理解を十分に得て、多腕バンディット問題についての資料を自力で読めるようにすることを目的としています。 A/Bテストのような2者択一ではなく、新しいアイデアの探索と、既存のアイデアから最大限の利益を引きだすという矛盾する2つの問題を解決するための一助となるでしょう。なお本書はEbookのみの販売となります。 yuku_tさんによる本書の英語版とバンディットアルゴリズムに関するまとめ http://qiita.com/yuku_t/items/6844aac6008911401b19 まえがき 1章 2種類のキャラクター:「探求」と「活用」 科学者とビジネスマン 「探求」と「活用」のジレンマ 2
次のサービスや製品はどれも身近にありますが、これらに共通していることはなんでしょう。 Amazonの「この商品を買った人はこんな商品も買っています」 はてなブックマークの「関連エントリー」 Google 翻訳 Google 日本語入力 メールクライアントのスパムフィルタ デジタルカメラの自動顔認識 ニンテンドーDSの手書き文字認識 買い物履歴、ユーザが書いたコメントやタグ、Webに無数にあるページ、メール、画像や動画と対象はそれぞれ異なっていますが、どれも「データから有益な情報を取り出す」ということを行っています。 これらは「機械学習」という技術を使って実現されているのです。 機械学習の応用範囲 機械学習は冒頭で挙げた以外にも、様々な分野で使われています。 例えば、ノイズ除去や特徴の抽出を目的とした利用パターンがあります。音声認識や画像認識、文字認識(OCR)などはその代表格です。それらも
スターリングの公式はランダウの記号を用いてと書くこともできる。 ランダウの記号(ランダウのきごう、英: Landau symbol)は、主に関数の極限における漸近的な挙動を比較するときに用いられる記法である。 ランダウの漸近記法 (asymptotic notation)、ランダウ記法 (Landau notation) あるいは主要な記号として O (数字の0ではない)を用いることから(バッハマン-ランダウの)O-記法 (Bachmann-Landau O-notation[1])、ランダウのオミクロンなどともいう。 記号 O はドイツ語のOrdnungの頭字にちなむ[2]。 なおここでいうランダウはエトムント・ランダウの事であり、『理論物理学教程』の著者であるレフ・ランダウとは別人である。 ランダウの記号は数学や計算機科学をはじめとした様々な分野で用いられる。 ランダウの記号 は 、x
2014年7月30日より8月27日まで開催した、paizaオンラインハッカソン(略してPOH![ポー!])Lite「天才火消しエンジニア霧島 もしPMおじさんが『丸投げ』を覚えたら」ですが、どのような解法が有ったのでしょうか。 今回もPOH恒例の「解説図解」を、天才火消しエンジニア霧島が解説するとしたら、という体で書いてみたいと思います。(特に文体とか変えませんがw 最後に霧島壁紙DLが有るので是非最後までお読みください。) ■どのような高速化ステップがあるのか? 今回の問題ですが、実行時間に大きく影響する計算量別にみたアプローチでは、すべての組み合わせを出して、人数を満たして一番安い組み合わせを見つける全探索[計算量はO(2^N)]と、動的計画法[計算量はq = max(q_i) としてO(Nq) ](やり方によってはO(NM))による2種類があります。 また全探索を改良し、効率的な枝刈
先日行われた第9回「データ解析のための統計モデリング入門」読書会にて、 「可視化で理解するマルコフ連鎖モンテカルロ法」というタイトルで発表させて頂きました。 発表スライドは以下です。 可視化で理解するマルコフ連鎖モンテカルロ法 from hoxo_m この発表は、みどりぼんに登場する、マルコフ連鎖モンテカルロ法(MCMC)のアルゴリズムである「メトロポリス法」と「ギブス・サンプラー」について、可視化して理解しようというお話です。 「マルコフ連鎖モンテカルロ法」というのは、字面だけ見ると難しそうですが、この発表で理解すべきポイントは、次のスライド 1枚に凝縮されています。 このことを念頭に置いて、それぞれの手法を見ていきましょう。 まず、メトロポリス法ですが、これは、 前の状態の近くの点を次の遷移先候補として選ぶ(マルコフ連鎖) そのときの確率比 r < 1 ならば確率 r で棄却する。それ
UNIXの基本的なコマンドの1つであるdiff。 これに実装されているアルゴリズムは実に興味深い世界が広がっています。 本稿では、筆者が開発した独自ライブラリ「dtl」をもとに「diffのしくみ」を解説します。 はじめに diffは2つのファイルやディレクトリの差分を取るのに使用するプログラムです。 ソフトウェア開発を行っている方であれば、SubversionやGitなどのバージョン管理システムを通して利用していることが多いかと思います。本稿ではそのdiffの動作原理について解説します。 差分の計算の際に重要な3つの要素 差分を計算するというのは次の3つを計算することに帰結します。 編集距離 2つの要素列の違いを数値化したもの LCS(Longest Common Subsequence) 2つの要素列の最長共通部分列 SES(Shortest Edit Script) ある要素列を別の要
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く