We asked all learners to give feedback on our instructors based on the quality of their teaching style.
Pythonで機械学習アプリケーションの開発環境、具体的にはNumpy/Scipy/scikit-learnを導入する手順について解説します。 なお、環境はPython3ベースを想定しています。 Minicondaベース(推奨) 機械学習系のパッケージはコンパイルが面倒なものが多いため、コンパイル済みバイナリをインストールできるconda(Miniconda)での環境構築を推奨します。 まずはPython本体(Python3想定)、パッケージ管理ツールであるpip、仮想環境を作成するvirtualenv、といった基本的な環境の構築を行います。 ※virtualenvについては今回(condaを使う場合)は不要ですが、Pythonで開発を行うなら入れておくべきパッケージなので併せて入れておきます。 Mac/Linux デフォルトのPythonと分けてインストールするため、pyenvを利用しま
お久しぶりです。徳永です。 講談社からオンライン機械学習というタイトルの本が出版されます。著者はPreferred Infrastructure/Preferred Networksの海野, 岡野原, 得居, 徳永の4人です。 機械学習の中でもオンライン機械学習に特化した本で、単純パーセプトロンから始まり、Passive Aggressive, Confidence Weighted, AROW, Soft Confidence Weightedなど(Passive Aggressive, Confidence Weighted, AROWは分散オンライン機械学習フレームワークJubatusでも実装されています)についてアルゴリズムの概要を説明したり、リグレット解析による性能解析について説明しています。また、分散環境でのオンライン機械学習や、深層学習での応用、効率的な実装方法など、応用的な
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 前回、株式の時系列データを分析する話で、後半にちょっとだけ機械学習の話をしました。今日は機械学習ライブラリ scikit-learn に触れます。 scikit-learn といえば以前にも簡単なクラスタリングの例をあげたり、サポートベクトルマシンやクラスタリングで問題を解く、 TF-IDF を計算する、回帰モデルの可視化、 DBSCAN によるクラスタリングといったことをしてきましたが、あらためてライブラリの機能を整理します。 機械学習と言うと難しい数学を駆使するイメージがつきまといますが、完成度の高いライブラリを使えば利用者が機械学
ディープラーニングが猛威を振るっています。私の周りでは昨年から多く聞かれるようになり、私も日経BPさんの連載で昨年5月にGoogleの買収したDeep Mind社について触れました。今年はさらに今までディープラーニングについて触れていなかったメディアでも触れられるようになってきましたね。例えば、イケダハヤトさんも先日。高知でも話題になっているのですね。 私事ですが、今度湯川鶴章さんのTheWaveという勉強会で、人工知能とビジネスについて一時間ほど登壇させていただくことになりました。有料セミナーということです。チャールズべバッジの解析機関についてはこのブログでも以前触れましたが、「機械が人間を置き換える」みたいな妄想は100年位は言われていることですね。「解析機関」「機械学習」「人工知能」「シンギュラリティー」など、呼び名はどんどん変わり、流行り廃りもありますが、最近ロボットの発達も相まっ
エンジニアサポート CROSS 2015 レポート 「Webアプリケーションから機械学習まで ~ PythonとPythonコミュニティの2015年大展望 」レポート 去る1月29日(木)に通算4回目となる「エンジニアサポートCROSS 2015」が開催されました。本レポートでは、「Webアプリケーションから機械学習まで~PythonとPythonコミュニティの2015年大展望」の当日の様子をお届けします。 はじめに このセッションでは(株)ALBERTの池内孝啓氏がオーナーを努め、各Pythonコミュニティのコアメンバーである次の方々が登壇しました。 池内孝啓氏 (株)ALBERT 池内孝啓氏 PyData Tokyo/(株)白ヤギコーポレーション シバタアキラ氏 一般社団法人PyCon JP/(株)CMSコミュニケーションズ 寺田学氏 PyLadies Tokyo/(
先日書いたOpenCVでアニメ顔検出をやってみた - kivantium活動日記の続編です。アニメ顔を検出するところまではうまくいったので、今度はキャラの分類をやってみようと思います。環境はUbuntu 14.10です。 ひと目で、尋常でない検出器だと見抜いたよ まずは分類に使う学習用データを用意します。投稿から半年以上経つのにまだランキング上位に残っている驚異の動画ご注文はうさぎですか? 第1羽「ひと目で、尋常でないもふもふだと見抜いたよ」 アニメ/動画 - ニコニコ動画を使います。 動画のダウンロード Ubuntuならaptで入れられるnicovideo-dlというツールを使います。 sudo apt-get install nicovideo-dl nicovideo-dl www.nicovideo.jp/watch/1397552685その後avidemuxでOP部分だけの動画を
Azure MLって何? からワークスペース作成まで:Webブラウザーでできる機械学習Azure ML入門(1)(1/2 ページ) 数学的な知識やソフトウェア知識がないと挑戦しにくい印象の機械学習を、Webサービスとして利用できる環境が「Azure Machine Learning」です。全体のプロセスを見ながら体験して理解してみましょう。 連載バックナンバー 本連載では、GUIやWebブラウザーなど手軽な環境を活用して、機械学習そのものの考え方の基本を理解していきます。 いきなりですが、読者の皆さんに質問です いきなりですが……、 機械学習って興味ありますか? 機械学習を実際にしたことはありますか? おそらく、こうした問いかけに対して、「興味はあるけど触れたことがない」という読者の方がほとんどだと思います。その理由を筆者は、どうやってやったらいいのか分からないからじゃないかなぁ、と思って
前回までに、分類問題のモデルの一つ「パーセプトロン」を紹介して、その実装を行いました。 パーセプトロンはとてもシンプルでわかりやすいモデルでしたが、「線形分離可能」なデータにしか適用できないという難点がありましたね。 今回は線形分離できないデータにも適用できる分類モデルとして、「ロジスティック回帰」を紹介します。 予測の信頼度 分類器を使って、実際の問題を解くときのことを考えてみます。例えば「メールのスパムフィルタ」などが想像しやすいでしょう。 一般的にスパムフィルタでは、データであるメールを「スパム(迷惑メール)」と「スパムではない(通常のメール)」のどちらかに分類します。そこで、ちょうどパーセプトロンのような2値分類器を使えば無事解決……とは、なかなかいきません。 スパムフィルタを通り抜けてしまった迷惑メールを一つ一つ消す、反対に必要なメールが間違ってスパムと判定されてしま
岡野原です。Deep Learningが各分野のコンペティションで優勝し話題になっています。Deep Learningは7、8段と深いニューラルネットを使う学習手法です。すでに、画像認識、音声認識、最も最近では化合物の活性予測で優勝したり、既存データ・セットでの最高精度を達成しています。以下に幾つか例をあげます。 画像認識 LSVRC 2012 [html] 優勝チームスライド [pdf], まとめスライド[pdf] Googleによる巨大なNeuralNetを利用した画像認識(猫認識として有名)[paper][slide][日本語解説] また、各分野のトップカンファレンスでDeep Learningのチュートリアルが行われ、サーベイ論文もいくつか出ました。おそらく来年以降こうした話が増えてくることが考えられます。 ICML 2012 [pdf] ACL 2012 [pdf] CVPR
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く