タグ

ブックマーク / tkengo.github.io (4)

  • Word2Vec のニューラルネットワーク学習過程を理解する · けんごのお屋敷

    Word2Vec というと、文字通り単語をベクトルとして表現することで単語の意味をとらえることができる手法として有名なものですが、最近だと Word2Vec を協調フィルタリングに応用する研究 (Item2Vec と呼ばれる) などもあるようで、この Word2Vec というツールは自然言語処理の分野の壁を超えて活躍しています。 実は Item2Vec を実装してみたくて Word2Vec の仕組みを理解しようとしていたのですが、Word2Vec の内部の詳細に踏み込んで解説した日語記事を見かけることがなかったので、今更感はありますが自分の知識の整理のためにもブログに残しておきます。なお、この記事は Word2Vec のソースコードといくつかのペーパーを読んで自力で理解した内容になります。間違いが含まれている可能性もありますのでご了承ください。もし間違いを見つけた場合は指摘してもらえると

    bongkura
    bongkura 2016/11/07
  • 機械学習でパラメータ推定 - 最尤推定法 - · けんごのお屋敷

    最尤推定法 (Maximum Likelyhood や Maximum Likelyhood Estimation と言われ、それぞれ頭文字を取って ML や MLE などとも言われる) は機械学習やコンピュータービジョンなどの分野で良く使われる推定法で、次のような条件付き同時確率を最大化することでパラメータの推定を行います。 $$ \hat{\theta} = \mathop{\mathrm{argmax}}\limits_{\theta} \mathrm{P}(x_1, x_2, \cdots, x_N|\theta) $$ これだけ見て「うん、アレね」と理解できる人はこの記事の対象読者ではなさそうですので、逆にいろいろ教えて下さい。この記事では理論の面から最尤推定法にアタックしてみます。数式成分が多めで、うっとなることもあるかもしれませんが、ゆっくり読んでいきましょう。 ※この記事を

  • やる夫で学ぶ機械学習シリーズ · けんごのお屋敷

    これは、機械学習に関する基礎知識をまとめたシリーズ記事の目次となる記事です。まとめることで知識を体系化できて自分自身の為にもなるので、こういうアウトプットをすることは大事だと思っています。ただ、普通にブログ記事を書くのも面白くないので、ちょっといつもとは違う方法でやってみようというのが今回のシリーズ記事。 2 ちゃんねるのキャラクターが登場人物として出てきて、彼らが会話して話が進んでいく「やる夫で学ぶシリーズ」という講義調の形式のものがあります。個人的にはやる夫で学ぶシリーズや 数学ガール のような会話形式で話が進んでいく読み物は読みやすいと思っています。さらに、先日みつけた やる夫で学ぶディジタル信号処理 という資料がとてつもなくわかりやすく、これの真似をして書いてみようと思い至りました。記事中のやる夫とやらない夫のアイコンは http://matsucon.net/material/m

  • 自然言語処理における畳み込みニューラルネットワークを理解する · けんごのお屋敷

    最近、畳み込みニューラルネットワークを使ったテキスト分類の実験をしていて、知見が溜まってきたのでそれについて何か記事を書こうと思っていた時に、こんな記事をみつけました。 http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp 畳み込みニューラルネットワークを自然言語処理に適用する話なのですが、この記事、個人的にわかりやすいなと思ったので、著者に許可をもらって日語に翻訳しました。なお、この記事を読むにあたっては、ニューラルネットワークに関する基礎知識程度は必要かと思われます。 ※日語としてよりわかりやすく自然になるように、原文を直訳していない箇所もいくつかありますのでご了承ください。翻訳の致命的なミスなどありましたら、Twitterなどで指摘いただければすみやかに修正します。 以下

    自然言語処理における畳み込みニューラルネットワークを理解する · けんごのお屋敷
  • 1