You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Googleアナリティクス4プロパティが登場し、誰でもBigQueryにログを出力できるようになった。ログ分析を始める環境は揃ったわけだが、ログ分析のノウハウはあまり世に出ていない。SQLを使ってこれらを分析する方法を少し紹介する。どんな高度なログ分析をするにしても、これが基本となる。 ウェブ分析の指標 ウェブ分析の基本は ページビュー数 セッション数 人数 のカウントである。複雑な分析も、結局カウントしているのはこの3つの指標に集約されることが多い。Eコマースになると購入金額の合計なども入ってくることはある。 そしてこれに「○○した」という条件が付いて イベント○○が発生した回数 ○○したページビュー数 パラメータ△△の値が□□だったイベント○○が発生した回数(ページ□□のページビュー数) ○○したセッション数 ○○した人数 をひたすらカウントする。たとえば 資料ダウンロードボタンをクリ
データ分析部インターン生の小川です。インターンでは主に動画収集のロジック実装に取り組んでいました。 Gunosyではログの管理にRedshiftとBigQueryを使用しています。 サービスはAWS上で動いているものも多いので基本はRedshiftで、ログの量が多いものやアドホック分析に用いるものはBigQueryに格納しています。 この2つのサービスでSQLの書き方が微妙に異なるところがあり、もどかしい経験をしたので、今回は、よく使うSQLの文法でRedshiftとBigQueryで表現が異なる所をまとめてみようと思います。 BigQueryの導入についてはこちらの記事をご覧ください。 また、この記事ではBigQueryはStandard SQLで記述していきます。 data.gunosy.io 日付・時刻関数 現在時刻(UTC) 現在時刻(JST) 現在の日付(UTC) 現在の日付(J
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く