タグ

LLMに関するcantaloupeのブックマーク (7)

  • ローカルLLMを使った全部盛り(streaming, RAG, Streamlit, ...)の作り方 - Qiita

    ローカルLLMを使った全部盛り(streaming, RAG, Streamlit, ...)の作り方PythonstreamingragStreamlitLLM 前回の投稿で一部しか紹介出来ておらず、詳細は別途記事にする予定がだいぶ遅くなってしまいました。今回はStreaming, RAG, Streamlitを使って、アップロードしたPDFファイルの内容に関する質問に、ストリーミング形式で回答してくれるチャットボットの作り方を紹介をさせてもらいます。 各個別の機能の詳細は既にQiitaを始め多くの記事で紹介されていますので、記事ではちゃんと動かせることに焦点を絞り、全体像を掴んでもらえることが出来ればと考えてます。 1. 前提となる環境 ・Python 3.9以上(ただしGPUで使用する場合はtorchの関係で3.11を推奨)。 ・必要なパッケージ: Pythonのバージョンに合わせ

    ローカルLLMを使った全部盛り(streaming, RAG, Streamlit, ...)の作り方 - Qiita
    cantaloupe
    cantaloupe 2024/07/23
    [RAG] [生成AI] [Python] [ローカル]
  • Chat VectorでLLaVAを日本語対応させる

    import torch from transformers import AutoTokenizer, AutoModelForCausalLM from llava.model.builder import load_pretrained_model if __name__ == "__main__": vlm_model_name = "liuhaotian/llava-v1.5-7b" vlm_tokenizer, vlm_model, image_processor, context_len = load_pretrained_model( model_path=vlm_model_name, model_base=None, model_name="llava-v1.5-7b", load_bf16=True, device_map="cpu", device="cpu" )

    Chat VectorでLLaVAを日本語対応させる
  • Dify で RAG を試す|npaka

    1. RAG「RAG」(Retrieval Augmented Generation) は、最新の外部知識の習得とハルシネーションの軽減という、LLMの2つの主要課題に対処するためのフレームワークです。開発者はこの技術を利用して、AI搭載のカスタマーボット、企業知識ベース、AI検索エンジンなどをコスト効率よく構築できます。これらのシステムは、自然言語入力を通じて、さまざまな形態の組織化された知識と相互作用します。 下図では、ユーザーが「アメリカの大統領は誰ですか?」と尋ねると、システムは回答のためにLLMに質問を直接渡しません。代わりに、ユーザーの質問について、知識ベース (Wikipediaなど) でベクトル検索を実施します。意味的な類似性マッチングを通じて関連するコンテンツを見つけ (たとえば、「バイデンは現在の第46代アメリカ合衆国大統領です...」)、LLMに発見した知識とともにユ

    Dify で RAG を試す|npaka
  • LLMのファインチューニング で 何ができて 何ができないのか|npaka

    LLMのファインチューニングで何ができて、何ができないのかまとめました。 1. LLMのファインチューニングLLMのファインチューニングの目的は、「特定のアプリケーションのニーズとデータに基づいて、モデルの出力の品質を向上させること」にあります。 OpenAIのドキュメントには、次のように記述されています。 ファインチューニングは、プロンプトに収まるよりも多くの例で学習することで、Few-Shot学習を改善します。一度モデルをファインチューニングすれば、プロンプトにそれほど多くの例を提供する必要がなくなります。これにより、コストを削減し、低レイテンシのリクエストを可能にします。 しかし実際には、それよりもかなり複雑です。 LLMには「大量のデータを投げれば自動的に解決する」ような創発的な特性があるため、ファインチューニングもそのように機能すると人々は考えていますが、必ずしもそうではありませ

    LLMのファインチューニング で 何ができて 何ができないのか|npaka
  • ローカルでLLMの推論を実行するのにOllamaがかわいい

    ローカルでLLMを動かそうとなったら transformers ライブラリ、llama.cpp、text generation webuiなどいくつかの選択肢があると思いますが、どれもめちゃくちゃハードルが高いというほどではないですが、動かすまでの手続が若干いかつい印象があります。 そんな中で Ollama というツールを試してみたところインターフェイスがシンプル、ついでにキャラクターのラマが可愛いのでご紹介していこうと思います。 ちなみにですが、日語での言及はあまり見かけなかったですが、LangChain が出してるレポートでは OSS モデルを動かすのに使われているものとしては3番目に多く使われており、 出典: LangChain State of AI 2023 GitHub のスター数も現在約33700とかなり人気を集めていそうです。 Ollama で CLI から推論 では早速

    ローカルでLLMの推論を実行するのにOllamaがかわいい
  • LLMのプロンプト技術まとめ - Qiita

    現在,34個掲載(一部執筆途中) Xのアカウント@fuyu_quantでも技術系の投稿をしているのでよかったらフォローしてください! はじめに 今回はすぐに使えそうなプロンプトの工夫やフレームワークについて有名なものをまとめました.LMの出力の精度向上に役立てられればと思います. 論文があるものについてはarXivに最初に投稿された順番で掲載しています. 論文で精度向上が確認されているのは英語での検証がほとんどであるため,日語で改善されるかは分かりません. 全てのLLM(GPT-4,Llama2,...)で精度が改善するとは限りません. ※記事に誤り等ありましたらご指摘いただけますと幸いです. 以下の記事では敵対的プロンプト技術をまとめています! 目次 Zero-shot prompting Few-shot prompting 2021年〜 Generated Knowledge Pr

    LLMのプロンプト技術まとめ - Qiita
  • LLMにナレッジグラフ(知識グラフ)を連携させることで、タスク遂行能力を大幅に向上させるフレームワーク『Graph Neural Prompting(GNP)』 | AIDB

    大規模言語モデル(LLM)は、質問応答、翻訳、テキスト要約など、さまざまなNLPタスクで優れた性能を発揮しています。しかし、モデルはしばしば正確な事実知識を捉えるのが難しく、根拠のない回答を生成することあります。この問題を解決するために、Amazonなどの研究者らが『Graph Neural Prompting(GNP)』という新しいフレームワークを考案しました。このフレームワークは、LLMにナレッジグラフ(知識グラフ)を連携させ、タスク遂行能力を大幅に向上させるものです。 従来の方法では、モデルに学習データを追加するためには高いコストがかかりました。しかし、GNPを用いることで、より低いコストで高い成果を得ることができます。さらに、この方法はカスタマイズが非常に柔軟であり、特定のドメインや業界に合わせて調整することが可能です。 この記事では、この興味深い研究について詳しく解説していきます

    LLMにナレッジグラフ(知識グラフ)を連携させることで、タスク遂行能力を大幅に向上させるフレームワーク『Graph Neural Prompting(GNP)』 | AIDB
  • 1