エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
LLMにナレッジグラフ(知識グラフ)を連携させることで、タスク遂行能力を大幅に向上させるフレームワーク『Graph Neural Prompting(GNP)』 | AIDB
記事へのコメント3件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
LLMにナレッジグラフ(知識グラフ)を連携させることで、タスク遂行能力を大幅に向上させるフレームワーク『Graph Neural Prompting(GNP)』 | AIDB
ホーム LLM, 有料記事, 論文 LLMにナレッジグラフ(知識グラフ)を連携させることで、タスク遂行能力を... ホーム LLM, 有料記事, 論文 LLMにナレッジグラフ(知識グラフ)を連携させることで、タスク遂行能力を大幅に向上させるフレームワーク『Graph Neural Prompting(GNP)』 大規模言語モデル(LLM)は、質問応答、翻訳、テキスト要約など、さまざまなNLPタスクで優れた性能を発揮しています。しかし、モデルはしばしば正確な事実知識を捉えるのが難しく、根拠のない回答を生成することあります。この問題を解決するために、Amazonなどの研究者らが『Graph Neural Prompting(GNP)』という新しいフレームワークを考案しました。このフレームワークは、LLMにナレッジグラフ(知識グラフ)を連携させ、タスク遂行能力を大幅に向上させるものです。 従来の方法では、モデルに学習データを追加するためには高いコストがかかりました。しかし、GNPを用いることで、より低いコスト
2023/10/20 リンク