某所の(1)ポアソン回帰モデルの説明が、(2)対数変換OLSと同じになっている気がします。違うものだと思うのですが、シミュレーションをして(1)と(2)の推定をして確認してみました。 1. モデル ポアソン分布はパラメーターで決定されるわけですが、を説明変数で説明するモデルになります。個のパラメータがあり、を説明変数、を係数として、以下のような式ですね。 被説明変数の値が0以上の整数のときの確率を、は間接的に決定するわけですね。教科書的には最尤法を用いて求めることになるみたいですが、実用的にはリンク関数を用いて一般化線形回帰モデルで推定できるようです。 2. データ作成 まずはポアソン回帰モデル用のデータxとyを作成します。 set.seed(20130919) x <- round(runif(100, max=3)) lambda <- exp(1.1 + 1*x) y <- nume