タグ

engineeringとscipyに関するcartman0のブックマーク (1)

  • Pythonでカルマンフィルタを実装してみる

    カルマンフィルタは、時間変化するシステムの、誤差のある離散的な観測から現在の状態を推定する手法。Wikipediaの記事(カルマンフィルター)がわかりやすい。 状態方程式と観測方程式が次のように与えられているとき (状態方程式) (観測方程式) (ノイズ) (フィルタ分布)線形カルマンフィルタ(LKF; Linear Kalman Filter)は μt, Σt, ut, yt+1 を入力として、 μt+1, Σt+1を出力する。1ステップのプロセスは以下のとおり。 # prediction (現在の推定値) (現在の誤差行列)# update (観測残差) (観測残差の共分散) (最適カルマンゲイン) (更新された現在の推定値) (更新された現在の誤差行列)観測を得るごとにPredictionとUpdateを繰り返すことで、現在の状態を推定します。 導出は後述(予定)。 例題を。 2次元

  • 1