タグ

ブックマーク / statmodeling.hatenablog.com (5)

  • 統計・機械学習・R・Pythonで用途別のオススメ書籍 - StatModeling Memorandum

    比較的読みやすいを中心に紹介します。今後は毎年このページを更新します。 微分積分 高校数学をきちんとやっておけばそんなに困ることないような。偏微分とテイラー展開は大学演習のようなでしっかりやっておきましょう。ラグランジュの未定乗数法のような、統計・機械学習で必要になる部分は、ネット等で学べばいいかなと思っています。 線形代数 tensorflowなどのおかげで順伝播部分(行列積および行列とベクトルの積)さえ書ければ線形代数の知識はそこまでいらないんじゃないかという流れを感じます。しかし、主成分分析やトピックモデルなどの行列分解や、ガウス過程などのカーネル法のような様々なデータ解析の手法に一歩踏み込むと、きちんとした勉強が必要になります。理解しやすくて使いやすくて、統計や機械学習への応用を主眼においた線形代数のはまだ見たことないです。機械学習シリーズとかで基礎から「The Matrix

    統計・機械学習・R・Pythonで用途別のオススメ書籍 - StatModeling Memorandum
  • 統計・R・Stan関連の本、用途別のオススメ10冊 - StatModeling Memorandum

    2016 - 12 - 24 統計・R・Stan関連の、用途別のオススメ10冊 書評 R Stan 年末年始向けに、比較的読みやすいを中心にオススメします。 統計学 入門 色々読んでみましたが、現在決定版と言えるものは存在しないように思えました。個人的には、シグマと 積分 の復習、場合の数・数え上げの方法、確率、確率変数、確率密度、度数分布と ヒストグラム 、代表値・平均・分散、確率分布、同時分布、周辺分布、確率変数の変数変換、検定、散布図と箱ひげ図、回帰、相関あたりをRなどを使いながらシンプルに説明していくがあるといいと思うのですが、なかなかバランスのとれたいいがありません。初歩の初歩しか説明してない、グラフが少ない、検定にページを割きすぎ、分厚い、ちょっと難しいなどの不満点があります。立ち読みして自分にあったを選ぶのがいいと思います。ネットで検索して調べるのでもいいと思います

    統計・R・Stan関連の本、用途別のオススメ10冊 - StatModeling Memorandum
  • 「StanとRでベイズ統計モデリング」松浦健太郎 という本を書きました - StatModeling Memorandum

    僕が筆者なので、この記事は書評ではなく紹介になります。まずこのはRのシリーズの一冊にもかかわらずStanという統計モデリングのためのプログラミング言語の方がメインです。このようなわがままを許してくれた、ゆるいふところの深い石田先生と共立出版には感謝しかありません。 StanとRでベイズ統計モデリング (Wonderful R) 作者:健太郎, 松浦発売日: 2016/10/25メディア: 単行 目次と概要 共立出版のページを見てください。GitHubのリポジトリもあります。 前提とする知識 「はじめに」の部分で触れていますが、確率と統計の基的な知識はある方、R(やPython)で簡単なデータ加工や作図が一通りできる方を想定しています。そのため、確率分布なんて聞いたことがない、プログラミングがはじめて、Rがはじめて、という方が読み進めるのは厳しいかもしれません。なお、Rの基的な関数し

    「StanとRでベイズ統計モデリング」松浦健太郎 という本を書きました - StatModeling Memorandum
  • StatModeling Memorandum

    ここ5,6年、技術記事を書くのにはてなブログを使っていましたが、以降でははなるべくZennで書くようにしたいと思います。過去の記事まで移行するわけではありません。 Zennが良い理由は複数あります。大きなところで以下です。 はてなブログでは数式が書きづらい。[tex: ] でくくるのが結構つらい。たまに一部の文字のエスケープが必要になる。一方、Zennはふつうの慣れたTeX記法で書ける。ほぼバグらない。 調べた範囲では、はてなブログ・QiitaではGitHubのリポジトリにあるコードの埋め込みができない。gistの埋め込みは簡単にできるんだけどね。一方、Zennは簡単に埋め込みができる。 上記のユーザの快適さは頑張ればすぐ実現できただろうけど、はてなブログの新機能はどれも技術記事の方には向いておらず、一般の記事の方に向いている印象がある。一方、Zenn技術者のためを謳っていることもあり、

    StatModeling Memorandum
  • 分布から見た線形モデル・GLM・GLMM - StatModeling Memorandum

    久保さんのみどりぼん勉強会もせっかく催されていることだし、それにちなんだ記事を書きたいと思っていました。ここまでいい加減にGLMとGLMMをすっ飛ばして紹介して、さっさとBUGS/Stanのラビリンスパラダイスへいざないたいなぁという心境をスライドにしました。 僕が勉強し始めた頃、GLMやGLMMがとっつきにくく感じる時がありました。しかし今は、できあがる分布(と説明変数Xの値を変えた時どうなるか)をイメージすることがまずは大切と思っています。それに親しんでいれば自然と適用範囲も分かります。そしてモデルの数式(もしくはBUGS/Stanコード)を併せて見ながら「GLMMの場合、この項は個体差を考えていることに相当するんだな」などと理解できればよいと思っています。言いたいことはそれに尽きています。 分布から見た線形モデル・GLM・GLMM from berobero11 スライドの最後から2

    分布から見た線形モデル・GLM・GLMM - StatModeling Memorandum
  • 1