タグ

MCMCと統計に関するchess-newsのブックマーク (3)

  • Stanによるベイズ推定の基礎 | Logics of Blue

    新規作成日:2015年12月5日 最終更新日:2016年9月22日 理論がわかっても、実践ができなければ意味がありません。 ここでは、Stanというフリーソフトを使って、ベイズ統計学をもとにしたパラメタ推定をパソコンで実行する方法を説明します。 ベイズとMCMCの組み合わせでもって統計モデルのパラメタを推定することができるのでした。この方法を、以下では「ベイズ推定」と呼ぶことにします。 ここでは、Stanを用いて統計モデルのパラメタのベイズ推定をする方法を説明します。 重要な点は、「Stanの使い方」を覚えるだけではうまくいかないということです。 Stanの内部で使われているのは乱数生成アルゴリズムです。乱数を生成してパラメタを推定するという行為は、最小二乗法なりで方程式を解き、パラメタを一発で推定するやり方とは大きく異なります。 その違いをぜひ理解なさってください。 コードをまとめたもの

  • MCMCの計算にStanを使ってみた(超基礎・導入編) - 渋谷駅前で働くデータサイエンティストのブログ

    肝心のMCMCの勉強はどこ行ったゴルァとか怒られるとアレなんですが、先にツールの使い方覚えてしまおうと思ってStanで簡単な練習をやってみました。ちなみに参考にした資料はこちら。 Stanチュートリアルの資料を作成しました。 - Analyze IT. StanTutorial 割とよく一緒に飲んでるid:EulerDijkstra氏のブログがとにかく役に立ちました。ありがとさんです!!! あと、MCMCやるのはこれが初めてという人は最低限久保先生の緑ぐらいは読んでおいて損はないと思います。ただしStanではなくWinBUGSを{R2WinBUGS}で回す系ですが。 データ解析のための統計モデリング入門――一般化線形モデル・階層ベイズモデル・MCMC (確率と情報の科学) 作者: 久保拓弥出版社/メーカー: 岩波書店発売日: 2012/05/19メディア: 単行購入: 16人 クリック

    MCMCの計算にStanを使ってみた(超基礎・導入編) - 渋谷駅前で働くデータサイエンティストのブログ
  • 可視化で理解するマルコフ連鎖モンテカルロ法(MCMC) - ほくそ笑む

    先日行われた第9回「データ解析のための統計モデリング入門」読書会にて、 「可視化で理解するマルコフ連鎖モンテカルロ法」というタイトルで発表させて頂きました。 発表スライドは以下です。 可視化で理解するマルコフ連鎖モンテカルロ法 from hoxo_m この発表は、みどりぼんに登場する、マルコフ連鎖モンテカルロ法(MCMC)のアルゴリズムである「メトロポリス法」と「ギブス・サンプラー」について、可視化して理解しようというお話です。 「マルコフ連鎖モンテカルロ法」というのは、字面だけ見ると難しそうですが、この発表で理解すべきポイントは、次のスライド 1枚に凝縮されています。 このことを念頭に置いて、それぞれの手法を見ていきましょう。 まず、メトロポリス法ですが、これは、 前の状態の近くの点を次の遷移先候補として選ぶ(マルコフ連鎖) そのときの確率比 r < 1 ならば確率 r で棄却する。それ

    可視化で理解するマルコフ連鎖モンテカルロ法(MCMC) - ほくそ笑む
  • 1