タグ

algorithmとmachinelearningに関するchess-newsのブックマーク (5)

  • 時系列解析_理論編 | Logics of Blue

    最終更新:2017年6月1日 時系列分析という名前はご存知でしょうか? 残念ながらExcelで実行するのがやや困難であるためこの名前もあまり浸透していないのではないかと思います。 時系列解析は、回帰分析とは違ってあまり知らない人も多いと思うので、ざっと解説を載せておきます。これだけ読めば、時系列分析の雰囲気はつかめるのではないでしょうか。 時系列分析の基礎の基礎からSARIMAモデルまでを一気に解説します。 それと、便利なパッケージ forecast の紹介も。 Rを使えば簡単に計算できますよ。 Pythonを使いたい方は「Pythonによる時系列分析の基礎」の実装例も併せて参照してください。 スポンサードリンク 目次 1.時系列解析って何? 2.時系列データの扱い方 3.知ると便利な用語集 3-1.自己相関係数・偏自己相関係数 3-2.ARモデル(自己相関モデル) 3-3.MAモデル(移

  • Monte Carlo Tree Search - Home

    Welcome to the Monte Carlo Tree Search (MCTS) research hub. The aim of this site is to provide a convenient reference point for MCTS material on the internet, to aid researchers in the area. This is an initiative of the £1.5m EPSRC project UCT for Games and Beyond. Please to submit corrections and additions. Crazy Time is Evolution Gaming's popular game show with a Money Wheel of Fortune and four

  • 機械学習 はじめよう 記事一覧 | gihyo.jp

    運営元のロゴ Copyright © 2007-2025 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します⁠。個別にライセンスが設定されている記事等はそのライセンスに従います。

    機械学習 はじめよう 記事一覧 | gihyo.jp
  • 機械学習アルゴリズムへの招待 | POSTD

    機械学習の問題 については以前に紹介したので、次はどんなデータを収集し、どんな機械学習アルゴリズムを使うことができるのかを見ていきましょう。投稿では、現在よく使用されている代表的なアルゴリズムを紹介します。代表的なアルゴリズムを知ることで、どんな技法が使えるかという全体的なイメージもきっとつかめてくるはずですよ。 アルゴリズムには多くの種類があります。難しいのは、技法にも分類があり拡張性があるため、規範的なアルゴリズムを構成するものが何なのか判別するのが難しいということですね。ここでは、実際の現場でも目にする機会の多いアルゴリズムを例にとって、それらを検討して分類する2つの方法をご紹介したいと思います。 まず1つ目は、学習のスタイルによってアルゴリズムを分ける方法。そして2つ目は、形態や機能の類似性によって(例えば似た動物をまとめるように)分ける方法です。どちらのアプローチも非常に実用的

    機械学習アルゴリズムへの招待 | POSTD
    chess-news
    chess-news 2014/06/18
     遺伝的アルゴリズムはないのかな?
  • 統計的機械学習入門 | 中川研究室

    導入pdf 情報の変換過程のモデル化 ベイズ統計の意義 識別モデルと生成モデル 最尤推定、MAP推定 データの性質 情報理論の諸概念 (KL-divergenceなど) 距離あるいは類似度 数学のおさらいpdf 行列の微分 線形代数学の役立つ公式 多次元正規分布 条件付き正規分布 Bayes推論pdf Bayseによる確率分布推定の考え方 多項分布、ディリクレ分布 事前分布としてのディリクレ分布の意味<\li> 正規分布と事後分布 指数型分布族 自然共役事前分布の最尤推定 線形回帰および識別pdf 線形回帰のモデル 正則化項の導入 L2正則化 L1正則化 正則化項のBayes的解釈 線形識別 2乗誤差最小化の線形識別の問題点 生成モデルを利用した識別 学習データと予測性能pdf 過学習 損失関数と Bias,Variance, Noise K-Nearest Neighbor法への応用 b

  • 1