タグ

Rと統計に関するcloqのブックマーク (5)

  • 統計・データ解析

    『Rで楽しむ統計』が出ました。サポートページ 『Rで楽しむベイズ統計入門』が出ました。サポートページ,第7章のRコードをStanで書き直したRで楽しむStan 全国学力・学習状況調査の個票の疑似データがこちらで公開されています。データ分析の練習に使えそうです。SSDSE(教育用標準データセット)も。 R 4.x では stringsAsFactors=FALSE がデフォルトになりましたが,サイトの古い記事ではそうなっていないところがあるかもしれません(read.csv() などで as.is=TRUE は不要になります(あってもかまいませんが))。 R 4.2 ではWindowsでもMac同様UTF-8がデフォルトになりました。もう fileEncoding オプションに "UTF-8","UTF-8-BOM" を指定する必要はなくなりそうです。一方で、SJIS(CP932)データの場

  • マイナーだけど最強の統計的検定 Brunner-Munzel 検定 - ほくそ笑む

    対応のない 2 群間の量的検定手法として、最も有名なのは Student の t 検定でしょうか。 以前、Student の t 検定についての記事を書きました。 小標問題と t検定 - ほくそ笑む しかし、Student の t 検定は、等分散性を仮定しているため、不等分散の状況にも対応できるように、Welch の t 検定を使うのがセオリーとなっています。 ただし、これら 2つの検定は分布の正規性を仮定しているため、正規性が仮定できない状況では、Mann-Whitney の U検定というものが広く使われています。 Mann-Whitney の U検定は、正規性を仮定しないノンパラメトリック検定として有名ですが、不等分散の状況でうまく検定できないという問題があることはあまり知られていません。 今日は、これらの問題をすべて解決した、正規性も等分散性も仮定しない最強の検定、Brunner-

    マイナーだけど最強の統計的検定 Brunner-Munzel 検定 - ほくそ笑む
  • 生態学データ解析 - FAQ 一般化線形モデル

    ここでは R の glm() を使って解析した場合の説明をしてみます 参照: FAQ 系ペイジ一覧, GLM 参照, summary(glm()) の星 この説明もしっかり読みましょう!信頼区間って難しい… [項目] 研究発表で「GLM を使った」と説明するときにはどうしたらよいでしょうか? GLM で得られた結果を発表・説明するときにはどうしたらよいでしょうか? 説明変数,応答変数って何ですか? family で指定する確率分布は「誤差の分布」ですか? family 指定はどうすればよいのでしょうか? 応答変数のばらつきが family 指定ではうまく表現できないときはどうすればいいのでしょうか? (一般化) 線形モデルは必ず交互作用項を含んでいなければならないのですか? glm() とかで Y ~ X1 + X1:X2 というふうに X2 は使わないときに交互作用項 X1:X2 だけを

    cloq
    cloq 2013/11/22
  • Rとカテゴリカルデータのモデリング(1)

    データサイエンスの分野では、観測データからノイズを取り除き、一定の法則を見つけ出して抽象化することをモデリングと呼ぶ。量的データの最も簡単なモデルは回帰分析である。欄の第13回~16回(2004年8月号~11月号)で線形・非線形回帰モデルについて説明した。稿では、カテゴリカルデータのモデリングについて説明する。 モデリングには、応答変数が何らかの確率分布に従うという仮定の下で、モデルに必要となる係数・パラメータを推測する方法が最も多く用いられている。一般の線形回帰分析はデータが正規分布に従うという仮定の下で、モデルの推定を行う。 カテゴリカルデータの場合は、観測データが2項分布、ポアソン分布、多項分布、などの確率分布に従うと見なし、モデルを推測する。 しかし、何らかの仮定の下で構築したモデルが真のモデルであるかどうかは判断できない。同一のデータについて異なる仮定の下で推定した複数のモデ

    cloq
    cloq 2013/11/22
  • Rプログラム (TAKENAKA's Web Page)

    R でプログラミング:データの一括処理とグラフ描き started on 2005-06-06 updated on 2017-09-16 竹中明夫 この文書は,フリーの統計解析・作図システム R を使って, データの一括処理と図化のプログラムを書けるようになるためのチュートリアルです. R の経験がまったくなくても読めるように書いています. ただし統計解析手法そのものについての解説はほとんどしていません. ひとつ覚えた統計解析用の関数を使って、 数十セットのデータを一度に処理しりたいとか、 ついでに自動的に作図してしまいたいとか、 統計解析の前にデータを一通りグラフにして全体像を見たいとか、 解析・作図の手順をプログラムとして書きとめ、 再利用できるようにしたいといった要望に応えるための文書です。 まずは はじめに:この文書のねらい をごらんください。 終りにでも、この文書の守備範囲に触

  • 1