道路除雪の若き担い手来たれ!新潟県が本気で募集 免許取得経費を助成、「1人乗り」拡大も検討…技術大会などPRにも注力「息の長い取り組みに」
「きわめて短時間にそこそこの成果を上げる」ことを得意とするタイプの人がいる。 ギリギリまで何もしないで、期限が迫ってから取りかかるくせに、最終的な成果物を見ると平均以上のクオリティを保っている。 難問に対して絶対的な解答をもたらすことはできないが、落としどころを見つけることに長けている。 他人から見れば「どう考えればそうなるのかわからない」思考プロセスを辿って、それでもまともな形で結果を出すことが出来る。 また、思考に小回りがきくため、急な状況の変化に難なく対応できる。 「きわめて短時間にそこそこの成果を上げる人間」の特徴 このタイプの人間には幾つかの特徴がある。 まず彼らは目的からスタートする。ひとたび目標を設定すると、それに向かって誘導ミサイルのごとく突撃する。 目に見える成果をイメージし、その実現に必要なリソースを自分の経験や他人の能力、そして環境の中から素早く探し出して投入し、カオ
今のゆとりってこんなに酷いのかよ… Tweet カテゴリ☆☆☆☆ 1 :名前:以下、名無しにかわりましてVIPがお送りします:2011/04/23(土) 07:36:44.84 ID:QJ4VLS/z0 http://l16.chip.jp/0211s/ 家族になってた 21 :名前:以下、名無しにかわりましてVIPがお送りします:2011/04/23(土) 07:42:39.10 ID:dLWXs4lF0 なんかのコスプレイベントかと思ったわwwww 13 :名前:以下、名無しにかわりましてVIPがお送りします:2011/04/23(土) 07:40:39.22 ID:hqQDC+c7O 見てて恥ずかしい 12 :名前:以下、名無しにかわりましてVIPがお送りします:2011/04/23(土) 07:40:36.75 ID:s0Ye7Fwo0 まだいんのかよこんな漫画でし
ニーチェ入門 (ニーチェニュウモン) セルフインフォ とは? このキーワードの内容に関わる方が 書いたキーワード(記事)です。 詳しくはヘルプをご覧ください。 竹田青嗣著 かなり著者の見方が前面に出てる感じの書き方で評価等は分かれる本かも。哲学書は今まで読んだこと無いので一般的なスタイルと言うものは分からないですが。 現代文明論 上でニーチェに触れたので読んでみましたが、正直この本の内容をまとめる自信は全く無いです。本書を読んだ方が速いと思います。このKWを読んで興味を持った方は是非本書を読んでみて下さい。ここでは簡単なまとめとKWや著者の考えが現れているところを抜き出しリンクを貼っていきたいと思います。『ニーチェ入門』入門となれば幸いです。 二〇世紀半ばまでニーチェはナチズムに影響を与えた危険な思想家とみなされることが多かったが、その後それまで最大の思想だったマルクス主義の凋
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "妲己" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2023年7月) 紂王と妲己(右) 妲己(だっき、拼音: Dájǐ)は、殷王朝末期(紀元前11世紀ごろ)の帝辛(紂王)の妃。帝辛に寵愛され、末喜などと共に悪女の代名詞的存在として扱われる。 有蘇氏の娘として生まれた。『国語』では、帝辛が有蘇氏を討った際に有蘇氏が献上したのが妲己であり、己が姓、妲は字であるとしている(この頃女性は字を先に、姓を後に書く風習があった)。妲己を字と見なすのは後世の誤解である。 基本史料である『史記』殷本紀[1]では、妲己は帝辛に寵愛され、帝辛は彼女のいう
1:以下、名無しにかわりましてVIPがお送りします:2011/04/23(土) 17:07:18.66 ID:gP5HWun20 日本が開発中の国産ステルス機 心神の性能 全方位立体映像 視線による複数ロックオン可能 最大8個の目標に同時に攻撃可能 全方位が射程 ゼロ戦並みの旋回性能 アフターバーナー燃焼時は世界最速 アフターバーナー連続燃焼可能時間10分 小鳥ほどの機影しか映らないステルス性 地上からは底面光学迷彩により目視が極めて困難 フレア以外に超高性能自動追尾機関砲によるミサイル迎撃が可能 エアコン、MP3再生機完備 マッサージチェア機能により戦闘で凝った体をほぐす ジェットエンジンの戦闘機の癖してゼロ戦並みの旋回性能wwwwwwwwwwwwwwwww 2:以下、名無しにかわりましてVIPがお送りします:2011/04/23(土) 17:09:31.39 ID:ET890go4O
社会人って明文化されてない微妙な常識やマナー多すぎるだろ Tweet カテゴリ☆☆☆ 1:以下、名無しにかわりましてVIPがお送りします:2011/02/15(火) 02:46:29.47ID:ZR0cbpn40 ・財布はズボンのポケットじゃなく スーツの内側の胸ポケットに入れる ・サラリーマンは携帯持ってても腕時計してないといけない ・飲み会では下座に座り上司のグラスが空になる前に注ぎに行く ・会社は仕事が始まる30分前には着て掃除しておく ・コーヒーとかのスポーンはかきまわすためのもの ・チョコは必ず値段が3倍返し ・有給は残ってても使ってはいけない ・上司より先に退社してはいけない ・目上に「御苦労さまです」は間違いで正しくは「お疲れ様です」 ・夜中の職種とかバイトは必ず挨拶は「おはようございます」 なんでこんなに細かいところまで常識知ってないと駄目なんだよ ビジネスマナーはまだい
ゲーデルの不完全性定理(ゲーデルのふかんぜんせいていり、英: Gödel's incompleteness theorems、独: Gödelscher Unvollständigkeitssatz)または不完全性定理とは、数学基礎論[1]とコンピュータ科学(計算機科学)の重要な基本定理[2]。(数学基礎論は数理論理学や超数学とほぼ同義な分野で、コンピュータ科学と密接に関連している[3]。) 不完全性定理は厳密には「数学」そのものについての定理ではなく、「形式化された数学」についての定理である[4][注 1]。クルト・ゲーデルが1931年の論文で証明した定理であり[5]、有限の立場(英語版)(形式主義)では自然数論の無矛盾性の証明が成立しないことを示す[3][5]。なお、少し拡張された有限の立場では、自然数論の無矛盾性の証明が成立する(ゲンツェンの無矛盾性証明(英語版))[3][注 2]。
この記事は 疑問を化学か物理専攻してる奴が解決するスレ 前編 の続きです。 296 以下、名無しにかわりましてVIPがお送りします 2011/04/15(金) 01:08:16.48 ID:C0zLI2ct0 エントロピーって何なの 木を育てるのとその木を1本燃やしつくすのとじゃエネルギーに差があるから不思議だねって認識でOK? 318 以下、名無しにかわりましてVIPがお送りします 2011/04/15(金) 01:12:47.37 ID:LJTuIi000 >>296 自然現象がどういう変化を起こすのかの指標みたいなもの 起こるんだったら+、起こらないんだったら-、変化しないんだったら0 321 以下、名無しにかわりましてVIPがお送りします 2011/04/15(金) 01:13:03.04 ID:z0HfHBG80 >>296 エントロピーは所謂乱雑さみたいなもん 固まっ
泡箱による電子対生成の観測記録 緑:右側から入射した光子 γ、青:対生成した電子 e-、赤:対生成した陽電子 e+ 電子と陽電子は泡箱の磁場によるローレンツ力で螺旋軌道(電荷が逆なので回転方向も逆)を描き、電荷を持たない光子は直進する(入射軌道は推定) 対生成(ついせいせい、Pair production)とは、光と物質との相互作用に関する量子力学用語で、エネルギーから物質(粒子と反粒子)が生成する自然現象を指す。逆反応は対消滅。 1930年、ポール・ディラックが2年前に発表したディラック方程式の解として予言し、1932年、カール・デイヴィッド・アンダーソンの電子対生成発見により立証された。その後加速器実験により、各中間子やミュー粒子、陽子についても観測されている。 原子核Zに光子γが入射して、対生成が生ずる 上図の反応のファインマン・ダイアグラムによる表現 光と物質の相互作用には、エネル
ホーキング放射は存在するか。仮に存在しない場合、ブラックホールが消失した時、その中にあった情報はどうなるのか。 ホーキング放射(ホーキングほうしゃ、英語: Hawking radiation)またはホーキング輻射(ホーキングふくしゃ)は、スティーヴン・ホーキングが存在を提唱・指摘した、ブラックホールからの熱的な放射のことである。 「ブラックホールは熱的な特性を持つだろう」と予言したヤコブ・ベッケンシュタインの名前を取って、ベッケンシュタイン・ホーキング輻射(Bekenstein-Hawking radiation)と呼ぶこともある。 一般相対性理論が予言するブラックホール天体には、量子効果を考えるならば、熱的な放射がある、と1974年にホーキングが提唱した。 ブラックホールの絶対温度 T が次式で定義される[1]。 ここで k はボルツマン定数、M はブラックホールの質量である[1]。つま
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く