c � 1. 5 2011 10 [1] ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 2 10 [2, 3] 1 [4] [5] 2. x ∈ X y ∈ Y z = (x, y), Z = X × Y Preferred Networks 113–0033 2–40–1 4 tokui@preferred.jp S = {zi}N i=1 ⊂ Z f : X → Y F = {fθ|θ ∈ Θ} fθ ∈ F F zi S f z = (x, y) �(f, z) f(x) y ES(f) = ( � z∈S �(f, z))/N ES(f) f z = (x, y) E(f) = Ez[�(f, z)] E(f) E(f) f f [6] f� F f� F F ˆ fF E(f) E(f� ) E(f
ここ1年ほど、人工知能、特に機械学習(Machine Learning)に関する技術革新が著しい。ディープラーニング(多段のニューラルネットワークによる機械学習)が画像認識、音声認識で目覚ましい成果を挙げているのは、その象徴だ。 それに伴い、機械学習の機能を情報システムに組み込むツールも充実してきた。クラウドサービスして提供する「クラウドAI」を米IT企業が相次ぎリリースしたほか、大規模データを扱えるオープンソース実装も増えている。 本特集では、主要な機械学習ツールの特徴や使いこなし方を解説する。 [6]国産の深層学習フレームワーク「Chainer」とは何か 本稿では、Preferred Networks/Preferred Infrastructureが開発したディープラーニングの開発フレームワーク「Chainer」の概要を説明する。 2015.10.01 [5]NVIDIA DIGIT
最近、機械学習系のタスクから離れていて(ずっとRails書いてました...そろそろ機械学習界隈の世界に戻らんと...) まだAdamの論文読めてなかったので、読んで適当に実装してみました。 motivation 簡単に実装できて、計算効率が良くて、省メモリで、スケールの影響も受けにくくて、大規模なデータ/パラメタに対して適応的なモデルを作りたい Adamの名前の由来 Adaptive moment estimation Adamの利点 AdaGradとRMSPropの良い所を合わせ持った手法 AdaGradはsparse gradientに強い(が、一次モーメントのバイアス訂正項がないのでバイアスが非常に大きくなって、パラメタの更新が非常に大きくなる) RMSPropはオンラインで非定常な設定で強い(がバイアス訂正項が小さな値になるとstepsizeがバカでかくなる) 初期値を与える必要は
, 2006.3.13 Topic URL= http://www.mibel.cs.tsukuba.ac.jp/~myama/pdf/topic2006.pdf • – • ex. • – – – • • UM DM PLSI LDA [ 1999] HDP � �� �� �� �� �� ��������������������������������������������������������� Eurospeech 㖸㗀ቇળ⎇ⓥ⊒ળ ᤐ ⛔ ⸘ ⊛ ⸒ ⺆ ࡕ ࠺ ࡞ 㑐 ㅪ ⺰ ᢥ ᢙ ࡐࠬ࠲㒰ߊ㧕 1/2 • • n-gram – Noisy Channel Models – – • – – 2/2 • PLSI LDA Probabilisitic LSI Latent Dirichlet Allocation UM DM Unigram Mixtures Diri
Gradient Boosting Decision Tree(GBDT)を勉強したので、その概要とRでのパッケージの簡単な使い方を乗っけておきます。 1. そもそもGBDTってなんだよっていう話。 単純に言えば、複数の決定木を作成して、集団で学習させる方法の事です。 1本決定木を作り、上手くモデルで説明が出来なかったobservationに対して重みを付け、重みのついた状態で次の木を作り、また重みを付けて・・・ というステップを指定した本数分だけ繰り返します。 誤差に対して学習しなおしてくれるので、決定木よりもっと良いモデルが出来上がります。 理論の詳細はこちらの本を参考にしていただければと。 英語版は著者サイトで無料公開されています。英語大丈夫な人はこちらを参照するとよいかと。 http://statweb.stanford.edu/~tibs/ElemStatLearn/ あとこのイ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く