大量のデータの背後にある潜在的な情報を抽出する技術として,トピックモデルと呼ばれる統計モデルの研究が近年注目を集めている。本書はこれについて,言語処理という具体的な問題に対して,その理論と応用をわかりやすく解説する。 0. 本書の使い方 0.1 本書の読み方 0.2 各章と付録の説明 0.3 本書で用いる記号など 1. 統計的潜在意味解析とは 1.1 潜在的意味・トピックと潜在的共起性 1.2 潜在意味解析の歴史 1.3 統計的潜在意味解析とデータ駆動インテリジェンスの創発 1.4 確率的潜在変数モデル 1.5 確率的生成モデルとグラフィカルモデル 2. Latent Dirichlet Allocation 2.1 概要 2.2 多項分布とDirichlet分布 2.3 LDAの生成過程 2.4 LDAの幾何学的解釈 2.5 LDAの応用例 3. 学習アルゴリズ