タグ

自然言語処理に関するendornoのブックマーク (4)

  • BLOG::broomie.net: 言語処理のための機械学習入門

    東工大の奥村先生監修、高村先生著の「言語処理のための機械学習入門」が発売されました。これは読まなければ!と思い、さっそく手に入れました。書の感想は当にシンプルな一言に尽きます。 「大学時代にこのがほしかった。。。」 書の目次の中見出しまでを以下に引用させていただきます。 言語処理のための機械学習入門 (自然言語処理シリーズ 1) 高村 大也 1. 必要な数学的知識 1.1 準備と書における約束事 1.2 最適化問題 1.3 確立 1.4 連続確率変数 1.5 パラメータ推定法 1.6 情報理論 1.7 この章のまとめ 2. 文書および単語の数学的表現 2.1 タイプ、トークン 2.2 nグラム 2.3 文書、文のベクトル 2.4 文書に対する前処理とデータスパースネス問題 2.5 単語ベクトル表現 2.6 文書や単語の確率分布による表現 2.7 この章のまとめ 3. クラスタリン

  • 統計的自然言語処理エンジンStaKK - nokunoの日記

    統計的自然言語処理エンジンStaKK を開発しました。nokuno’s stakk at master - GitHub 以下、READMEからの引用です。 現在の機能 かな漢字変換 予測変換 または サジェスト スペル訂正 形態素解析 HTTPによるAPIサーバ Trieの直接操作現在は、StaKK は辞書として Mozc (Google日本語入力のOSS版)のデータを使っています。 リバースモードについてStaKK はノーマルモードとリバースモードの2つのモードを持っています。 ノーマルモードでは、かなを入力し、単語(主に漢字)を出力します。 リバースモードでは、単語を入力し、読みや品詞を出力します。これらの2つのモードの応用例をまとめると、次の表のようになります。 機能 ノーマルモード リバースモード Convert かな漢字変換 形態素解析 Predict 予測変換 検索ワードのサ

  • 最大マージン kNN と SVM の関係: kNN も最近はがんばっています - 武蔵野日記

    先日書いた機械学習における距離学習の続き。 kNN (k-nearest neighbour: k 近傍法)は Wikipedia のエントリにも書いてある通り、教師あり学習の一つで、あるインスタンスのラベルを周辺 k 個のラベルから推定する手法。memory-based learning と呼ばれることもある。単純に多数決を取る場合もあれば(同点を解決する必要があるが)、近いインスタンスの重みを大きくする場合もあるのだが、いずれにせよかなり実装は単純なので、他の機械学習との比較(ベースライン)として使われることも多い。 簡単なアルゴリズムではあるが、1-NN の場合このアルゴリズムの誤り率はベイズ誤り率(達成可能な最小誤り率)の2倍以下となることが示されたり、理論的にもそれなりにクリアになってきているのではないかと思う。また、多クラス分類がちょっと一手間な SVM (pairwise に

  • Python による日本語自然言語処理

    はじめに この文書は、 Steven Bird, Ewan Klein, Edward Loper 著 萩原 正人、中山 敬広、水野 貴明 訳 『入門 自然言語処理』 O'Reilly Japan, 2010. の第12章「Python による日語自然言語処理」を、原書 Natural Language Processing with Python と同じ Creative Commons Attribution Noncommercial No Derivative Works 3.0 US License の下で公開するものです。 原書では主に英語を対象とした自然言語処理を取り扱っています。内容や考え方の多くは言語に依存しないものではありますが、単語の分かち書きをしない点や統語構造等の違いから、日語を対象とする場合、いくつか気をつけなければいけない点があります。日語を扱う場合にも

  • 1