「ビジョンの作り方」5つのポイント ―これで全速前進! http://www.earthinus.com/2010/11/how-to-make-vision.html
「ビジョンの作り方」5つのポイント ―これで全速前進! http://www.earthinus.com/2010/11/how-to-make-vision.html
統計的自然言語処理エンジンStaKK を開発しました。nokuno’s stakk at master - GitHub 以下、READMEからの引用です。 現在の機能 かな漢字変換 予測変換 または サジェスト スペル訂正 形態素解析 HTTPによるAPIサーバ Trieの直接操作現在は、StaKK は辞書として Mozc (Google日本語入力のOSS版)のデータを使っています。 リバースモードについてStaKK はノーマルモードとリバースモードの2つのモードを持っています。 ノーマルモードでは、かなを入力し、単語(主に漢字)を出力します。 リバースモードでは、単語を入力し、読みや品詞を出力します。これらの2つのモードの応用例をまとめると、次の表のようになります。 機能 ノーマルモード リバースモード Convert かな漢字変換 形態素解析 Predict 予測変換 検索ワードのサ
ご訪問いただいたお客様へのお知らせ アクセスいただいたWebサービスは提供を終了いたしました。 長年にわたり、多くの皆様にご利用いただきましたことを心よりお礼申し上げます。 ODNトップページへ
先日書いた機械学習における距離学習の続き。 kNN (k-nearest neighbour: k 近傍法)は Wikipedia のエントリにも書いてある通り、教師あり学習の一つで、あるインスタンスのラベルを周辺 k 個のラベルから推定する手法。memory-based learning と呼ばれることもある。単純に多数決を取る場合もあれば(同点を解決する必要があるが)、近いインスタンスの重みを大きくする場合もあるのだが、いずれにせよかなり実装は単純なので、他の機械学習との比較(ベースライン)として使われることも多い。 簡単なアルゴリズムではあるが、1-NN の場合このアルゴリズムの誤り率はベイズ誤り率(達成可能な最小誤り率)の2倍以下となることが示されたり、理論的にもそれなりにクリアになってきているのではないかと思う。また、多クラス分類がちょっと一手間な SVM (pairwise に
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く