実務に現れる組合せ最適化問題には,汎用の数理最適化ソルバーで対応できない問題が少なくありません.このような問題に対しては,貪欲法や局所探索法を基本戦略にさまざまなアイデアを組み合わせたメタヒューリスティクスの開発がひとつの有効な手段となります.しかし,メタヒューリスティクスの設計や実装を詳細に解説している書籍は少なく,そのノウハウを習得することは容易ではありません.本スライドでは,巡回セールスマン問題と一般化割当問題を通じてメタヒューリスティクスの設計と実装を解説します.
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く