O'Reilly Graph Databases The Definitive Book of Graph Databases. Download your FREE copy Discover how graph databases can help you manage and query highly connected data. With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build
This webpage was generated by the domain owner using Sedo Domain Parking. Disclaimer: Sedo maintains no relationship with third party advertisers. Reference to any specific service or trade mark is not controlled by Sedo nor does it constitute or imply its association, endorsement or recommendation.
Enjoy GraphDB! - graphdb jp #1(Japanese) 1. Enjoy GraphDB! ~ Python with Bulbs and Rexster ~Fungoing LLC / Satoshi MiyauchiTwitter : @bibrost 2. 宮内 聖 / Satoshi Miyauchi @bibrost 野良です MongoDB、Python、Scalaとか 最近HotなのはやはりFluent 秋葉原に別荘を借りました 11月にカリフォルニア行ってきます Page : 1 3. みなさんおつかれさまです Page : 2 4. ここまでの話でGraphDBの理解は 深まったはず Page : 3 5. しかし Page : 4 6. アプリで使えないと意味がないよね Page : 5 7. ということで Page : 6 8. Enjoy
When you buy through affiliate links in our content, we may earn a commission at no extra cost to you. Learn how our funding model works. By using this website you agree to our terms and conditions and privacy policy. We uphold a strict editorial policy that focuses on factual accuracy, relevance, and impartiality. Our content, created by leading industry experts, is meticulously reviewed by a tea
Trinity is a general purpose distributed graph system over a memory cloud. Memory cloud is a globally addressable, in-memory key-value store over a cluster of machines. Through the distributed in-memory storage, Trinity provides fast random data access power over a large data set. With the power of fast graph exploration and distributed parallel computing, Trinity supports both low-latency online
Key Facts The mathematical definition of a hypergraph is an extension to the standard graph concept that allows an edge to point to more than two nodes. HyperGraphDB extends this even further by allowing edges to point to other edges as well and making every node or edge carry an arbitrary value as payload. The original requirements that triggered the development of the system came from the OpenCo
A graph is a structure composed of a set of vertices (i.e.~nodes, dots) connected to one another by a set of edges (i.e.~links, lines). The concept of a graph has been around since the late 19th century, however, only in recent decades has there been a strong resurgence in the development of both graph theories and applications. In applied computing, since the late 1960s, the interlinked table str
VoldemortやTokyo Cabinetといったキー/バリューシステムにおけるモデリングの最小単位はキー/バリューペアになる。そして、BigTableやそのクローンでは可変数の属性をもつタプルに、CouchDBやMongoDBといったドキュメントデータベースではドキュメントになる。これに対しグラフデータベースでは、データセット全体をひとつの巨大な高密度ネットワーク構造としてモデル化する。 ここではNOSQLデータベースにおける2つの興味深いポイント、スケーラビリティと複雑さについて詳しく説明する。 1. スケーラビリティ CAP: ACID 対 BASE 従来のデータベースシステムのほとんどは、トランザクションに基づいてデータの完全性を保証する。トランザクションを使うことで、データ管理のあらゆる状況において、データの一貫性を確保している。こうしたトランザクションの性質は、ACID(A
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く