タグ

ブックマーク / www.riken.jp (8)

  • 水に特有の物理的特性の起源を解明 | 理化学研究所

    要旨 理化学研究所(理研)放射光科学総合研究センター ビームライン開発チームの片山哲夫客員研究員(高輝度光科学研究センターXFEL利用研究推進室研究員)、ストックホルム大学のキョンホァン・キム研究員、アンダース・ニルソン教授らの国際共同研究グループは、X線自由電子レーザー(XFEL)[1]施設SACLA[2]を利用し、過冷却状態[3]にある水(H2O)の構造を捉えることに成功しました。 水は生命に不可欠な液体ですが、その挙動に関する理解は不完全です。例えば、温度を下げていくときの密度、熱容量[4]、等温圧縮率[5]といった熱力学的な特性の変化は、水と他の液体とでは逆の挙動を示します。そのため、水の熱力学的な特性については長年議論されており、いくつかの仮説が提唱されています。そのうちの一つが、水には密度の異なる二つの相があり、その間を揺らいでいるという仮説です。しかし、温度を0℃未満に下げた

  • 脳の基本単位回路を発見 | 理化学研究所

    要旨 理化学研究所(理研)脳科学総合研究センター局所神経回路研究チームの細谷俊彦チームリーダー、丸岡久人研究員らの研究チーム※は、哺乳類の大脳皮質[1]が単純な機能単位回路の繰り返しからなる六方格子状の構造を持つことを発見しました。 大脳はさまざまな皮質領野[2]に分かれており、それぞれ感覚処理、運動制御、言語、思考など異なる機能をつかさどっています。大脳は極めて複雑な組織なため、その回路の構造には不明な点が多く残っています。特に、単一の回路が繰り返した構造が存在するか否かは不明でした。 今回、研究チームは、大脳皮質に6層ある細胞層の一つである第5層をマウス脳を用いて解析し、大部分の神経細胞が細胞タイプ特異的なカラム状の小さなクラスター(マイクロカラム)を形成していることを発見しました。マイクロカラムは六方格子状の規則的な配置をとっており、機能の異なるさまざまな大脳皮質領野に共通に存在して

  • 化学的手法でクモの糸を創る | 理化学研究所

    要旨 理化学研究所(理研)環境資源科学研究センター酵素研究チームの土屋康佑上級研究員と沼田圭司チームリーダーの研究チームは、高強度を示すクモ糸タンパク質のアミノ酸配列に類似した一次構造[1]を持つポリペプチドを化学的に合成する手法を開発しました。また、合成したポリペプチドはクモ糸に類似した二次構造[1]を構築していることを明らかにしました。 クモの糸(牽引糸)は鉄に匹敵する高強度を示す素材であり、自動車用パーツなど構造材料としての応用が期待されます。しかし、一般的にクモは家蚕のように飼育することができないため、天然のクモ糸を大量生産することは困難です。また、一部の高コストな微生物合成法を除くと、人工的にクモ糸タンパク質を大量かつ簡便に合成する手法は確立されていません。 今回、研究チームはこれまでに研究を進めてきた化学酵素重合[2]を取り入れた2段階の化学合成的手法を用いて、アミノ酸エステル

  • シビレエイ発電機 | 理化学研究所

    要旨 理化学研究所(理研)生命システム研究センター集積バイオデバイス研究ユニットの田中陽ユニットリーダーらの共同研究グループ※は、シビレエイ[1]の電気器官を利用した新原理の発電機を開発しました。 火力や原子力といった既存の発電方法に代わる、クリーンで安全な発電方法の開発が急がれています。そこで近年、生物機能に着目し、グルコース燃料電池[2]や微生物燃料電池[3]などのバイオ燃料電池が開発されていますが、従来の発電法に比べて出力性能が劣っています。 一方、シビレエイに代表される強電気魚は、体内の電気器官で変換効率が100%に近い効率的な発電を行っています。これは、ATP(アデノシン三リン酸)をイオン輸送エネルギーに変換する膜タンパク質が高度に配列・集積化された電気器官とその制御系である神経系を強電気魚が有しているためです。共同研究グループは、これを人工的に再現・制御できれば、画期的な発電方

  • 乱雑さを決める時間の対称性を発見 | 理化学研究所

    要旨 理化学研究所(理研)理論科学連携研究推進グループ分野横断型計算科学連携研究チームの横倉祐貴基礎科学特別研究員と京都大学大学院理学研究科物理学宇宙物理学専攻の佐々真一教授の共同研究チームは、物質を構成する粒子の“乱雑さ”を決める時間の対称性[1]を発見しました。 乱雑さは、「エントロピー[2]」と呼ばれる量によって表わされます。エントロピーはマクロな物質の性質をつかさどる量として19世紀中頃に見い出され、その後、さまざまな分野に広がりました。20世紀初頭には、物理学者のボルツマン、ギブス、アインシュタインらの理論を踏まえて「多数のミクロな粒子を含んだ断熱容器の体積が非常にゆっくり変化する場合、乱雑さは一定に保たれ、エントロピーは変化しない」という性質が議論されました。同じ頃、数学者のネーターによって「対称性がある場合、時間変化のもとで一定に保たれる量(保存量)が存在する」という定理が証

  • 113番元素の命名権獲得 | 理化学研究所

    要旨 理化学研究所仁科加速器研究センター超重元素研究グループの森田浩介グループディレクター(九州大学大学院理学研究院教授)を中心とする研究グループ(森田グループ)[1]が発見した「113番元素」を、国際機関が新元素であると認定しました。12月31日、国際純正・応用化学連合(IUPAC)より森田グループディレクター宛てに通知がありました。これに伴い、森田グループには発見者として新元素の命名権が与えられます。欧米諸国以外の研究グループに命名権が与えられるのは初めてです。元素周期表にアジアの国としては初めて、日発の元素が加わります。 森田グループは、理研の重イオン加速器施設「RIビームファクトリー(RIBF)[2]」の重イオン線形加速器「RILAC[3]」を用いて、2003年9月から亜鉛(Zn:原子番号 30)のビームをビスマス(Bi:原子番号 83)に照射し、新元素の合成に挑戦してきました。

  • 電気で生きる微生物を初めて特定 | 理化学研究所

    要旨 理化学研究所環境資源科学研究センター生体機能触媒研究チームの中村龍平チームリーダー、石居拓己研修生(研究当時)、東京大学大学院工学系研究科の橋和仁教授らの共同研究チームは、電気エネルギーを直接利用して生きる微生物を初めて特定し、その代謝反応の検出に成功しました。 一部の生物は、生命の維持に必要な栄養分を自ら合成します。栄養分を作るにはエネルギーが必要です。例えば植物は、太陽光をエネルギーとして二酸化炭素からデンプンを合成します。一方、太陽光が届かない環境においては、化学合成生物と呼ばれる水素や硫黄などの化学物質のエネルギーを利用する生物が存在します。二酸化炭素から栄養分を作り出す生物は、これまで光合成か化学合成のどちらか用いていると考えられてきました。 共同研究チームは、2010年に太陽光が届かない深海熱水環境に電気を非常によく通す岩石が豊富に存在することを見出しました。そして、電

  • STAP細胞問題にご関心を寄せられる方々へ | 理化学研究所

    再生医学分野を世界的に先導してきた笹井芳樹 発生・再生科学総合研究センター副センター長の早すぎる死を防げなかったことは、痛恨の極みです。笹井副センター長に謹んで哀悼の意を表すとともに、ご家族に心からお悔やみ申し上げます。 今、大切なことは、この不幸がこれ以上周辺の関係者に影響を与えないことであると認識しております。波紋が社会的に大きく広がる中で、関係者の精神的負担に伴う不測の事態の惹起を防がねばなりません。 3月以降、STAP論文の著者たちが、多方面から様々な批判にさらされ、甚だしい心労が重なったことを懸念し、メンタルケアなどに留意していたところですが、今回の事態に至ってしまったことは残念でなりません。 現在、当該論文著者のみならず、現場の研究者、特に若い研究者たち、技術者、事務職員ならびにその家族、友人たちの動揺と不安は深刻であり、非常に大きな心労を抱えている者もおります。理研は、今後も

  • 1