タグ

2020年6月15日のブックマーク (2件)

  • 生徒児童10万人「感謝の拍手」に賛否 強制するもの?:朝日新聞デジタル

    ","naka5":"<!-- BFF501 PC記事下(中⑤企画)パーツ=1541 -->","naka6":"<!-- BFF486 PC記事下(中⑥デジ編)パーツ=8826 --><!-- /news/esi/ichikiji/c6/default.htm -->","naka6Sp":"<!-- BFF3053 SP記事下(中⑥デジ編)パーツ=8826 -->","adcreative72":"<!-- BFF920 広告枠)ADCREATIVE-72 こんな特集も -->\n<!-- Ad BGN -->\n<!-- dfptag PC誘導枠5行 ★ここから -->\n<div class=\"p_infeed_list_wrapper\" id=\"p_infeed_list1\">\n <div class=\"p_infeed_list\">\n <div class=\"

    生徒児童10万人「感謝の拍手」に賛否 強制するもの?:朝日新聞デジタル
    good2nd
    good2nd 2020/06/15
    やめろとまでは言わんけど、こういうのは気持ち悪いよな。北朝鮮の議場の拍手みたいな変なうねった音を想像してしまう。
  • 物理と数学の履修時期は常に1年すれ違っている

    物理学は常に数学の発展と共に進歩してきた。 というより物理学からの必要に駆られた要請によって新たな数学の概念が切り開かれてきた。 したがって当然、物理を学ぶ際には現象そのものの理解とその裏に潜む数学的内容の理解が両輪となるのだが、 なぜだか日の学校教育においては、この前提が上手く機能していない。 物理分野においてある現象を習ったその翌年に、ようやく数学分野において必要な概念が登場するといった具合だ。 具体的には、以下のようなものがある。 小学校6年の理科で「てこ」の法則性を学ぶ。この背景にあるはずの「反比例」の関係は中学1年の数学で習う。中学校3年の理科で力の分解を学ぶ。この背景にあるはずの「三角比」は高校1年の数学Ⅰで習う。中学校3年の理科で運動エネルギーを学ぶ。この背景にあるはずの「二次関数」は高校1年の数学Ⅰで習う。高校1年の物理基礎で等加速度運動を学ぶ。この背景にあるはずの「多項

    物理と数学の履修時期は常に1年すれ違っている
    good2nd
    good2nd 2020/06/15
    なるほど面白い。なんでこうなってるのか、誰かの解説を期待。