Python Theano を使って Deep Learning の理論とアルゴリズムを学ぶ会、第三回。今回で教師あり学習の部分はひと段落。 目次 DeepLearning 0.1 について、対応する記事のリンクを記載。 第一回 MNIST データをロジスティック回帰で判別する 英 第二回 多層パーセプトロン 英 第三回 畳み込みニューラルネットワーク (今回) 英 第四回 Denoising オートエンコーダ 英 第五回 多層 Denoising オートエンコーダ 英 第六回の準備1 networkx でマルコフ確率場 / 確率伝搬法を実装する - 第六回の準備2 ホップフィールドネットワーク - 第六回 制約付きボルツマンマシン 英 Deep Belief Networks 英 Hybrid Monte-Carlo Sampling 英 Recurrent Neural Network