Pythonで音声信号処理(2011/05/14)の第19回目。 今回は、音声認識の特徴量としてよく見かけるメル周波数ケプストラム係数(Mel-Frequency Cepstrum Coefficients)を求めてみました。いわゆるMFCCです。 MFCCはケプストラム(2012/2/11)と同じく声道特性を表す特徴量です。ケプストラムとMFCCの違いはMFCCが人間の音声知覚の特徴を考慮していることです。メルという言葉がそれを表しています。 MFCCの抽出手順をまとめると プリエンファシスフィルタで波形の高域成分を強調する 窓関数をかけた後にFFTして振幅スペクトルを求める 振幅スペクトルにメルフィルタバンクをかけて圧縮する 上記の圧縮した数値列を信号とみなして離散コサイン変換する 得られたケプストラムの低次成分がMFCC となります。私が参考にしたコードは振幅スペクトルを使ってたけど
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く